【赵渝强老师】K8s中Deployment控制器与StatefulSet控制器的区别

news2025/1/24 1:43:27

在这里插入图片描述

一、K8s的Deployment与StatefulSets

  在K8s中,Deployment将Pod部署成无状态的应用程序,它只关心Pod的数量、Pod更新方式、使用的镜像和资源限制等。由于是无状态的管理方式,因此Deployment中没有角色和顺序的概念,换句话说:Deployment中没有状态。
  通过使用Deployment,可以让开发人员上线部署Pod、设置Pod的副本、实现Pod的升级与回滚。通过在yaml文件中描述Deployment的目标是什么,Deployment控制器就会自动完成对Pod和Replica Set的管理。Kubernetes运行创建一个新的Deployment,也可以用一个新的Deployment替换旧的Deployment。
  K8s的StatefulSets控制器将Pod部署成有状态的应用程序。通过使用StatefulSets控制器,可以为Pod提供持久存储和持久的唯一性标识符。StatefulSets控制器与Deployment控制器不同的是,StatefulSets控制器为管理的Pod维护了一个有粘性的标识符。无论这些Pod如何被调度,每个Pod的标识符都是永久不变的。这一特点可以满足一些特殊场景的需要,例如:使用存储卷为为Kubernetes集群提供持久型存储时,可以使用StatefulSets控制器作为解决方案的一种。
  下面列举了一些StatefulSets的典型应用场景:

  • 需要唯一的、稳定的网络标识符,即:Pod重新调度后其Pod名称和主机名不变。
  • 需要持久的、稳定的持久化存储,即:Pod重新调度后还是能访问到相同的持久化数据。
  • 需要优雅的、有序的部署应用和扩容缩容,即:Pod的部署和启动是顺序要求的,在部署或者扩- 展的时候要依据定义的顺序依次依次进行。
  • 需要自动的、有序的滚动更新和回滚应用。

  视频讲解如下:

K8s中Deployment控制器与StatefulSet控制器的区别

【赵渝强老师】无状态控制器Deployment与有状态控制器StatefulSet的区别

二、Deployment与StatefulSets的区别

  下表对比了无状态的控制器Deployment与有状态控的制器StatefulSets的主要异同。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2212694.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

关于VS Studio2022如何使用scanf函数

前言: 小编在最近给别人安装VS2022的时候,忘记让他弄一段代码来解决VS不能使用scanf函数这个问题了,导致他编写代码的时候出错了,小编考虑到可能有一些读者朋友同样也会遇到这种问题,于是我就写下了这一篇文章来帮助一…

并发编程-线程池

并发编程-线程池 本篇我们主要围绕线程池的原理以及源码进行分析,事实上线程池本身并不是什么新的技术,而是在池化技术的思想上把一些工具类整合起来。话不多说,我们开始进入正题。我们先来认识一下什么是线程池 概念 线程池(T…

Linux进程间通信(一)——管道通信

目录 前言 1.管道实现进程间通信 ①管道的所属问题 ②匿名管道通信 ③命名管道通信 2.使用管道通信实现一个进程池 ①进程池类图 ②Channel类实现 ③ProcessPoll类实现 ④代码一览 前言 在学习Linux中的进程时,曾提到过进程的独立性。进程独立性的是进程与进程之间…

SpringMVC后台控制端校验-表单验证深度分析与实战优化

前言 在实战开发中,数据校验也是十分重要的环节之一,数据校验大体分为三部分: 前端校验后端校验数据库校验 本文讲解如何在后端控制端进行表单校验的工作 案例实现 在进行项目开发的时候,前端(jquery-validate),后端,数据库都要进行相关的数据…

【数据结构】图的最短路径

快乐的流畅:个人主页 个人专栏:《C游记》《进击的C》《Linux迷航》 远方有一堆篝火,在为久候之人燃烧! 文章目录 引言一、最短路径的概念二、Dijkstra算法2.1 思想2.2 实现 三、Bellman-Ford算法3.1 思想3.2 实现 四、Floyd-Warsh…

操作教程|基于DataEase用RFM分析法分析零售交易数据

DataEase开源BI工具可以在店铺运营的数据分析及可视化方面提供非常大的帮助。同样,在用于客户评估的RFM(即Recency、Frequency和Monetary的简称)分析中,DataEase也可以发挥出积极的价值,通过数据可视化大屏的方式实时展…

液态神经网络 LNN

神经网络 (NN) 是 机器学习 模仿人脑结构和运算能力以从训练数据中识别模式的算法。 通过处理和传输信息的互连人工神经元网络,神经网络可以执行复杂的任务,例如 人脸识别, 自然语言理解,以及无需人工协助的预测分析。 尽管神经网络是一种强…

Mac电脑SourceTree git账号密码更改提示再次输入密码

前言: 最近小编git账号密码修改了,之前在sourceTree的git仓库在拉代码提交代码就会报错,提示因为密码导致的仓库连接失败。 解决方案 1.在mac电脑应用程序中搜索“钥匙串” 点击钥匙串访问 在钥匙串中选登录,在在右侧列表中找…

key形式和key/value形式二叉树

首先模拟一下key形式类 使用的结构是搜索二叉树 结点中有左孩子和右孩子 还有一个存储的值 template <class K>struct BSTnode//搜索二叉树不支持修改 中序遍历是有序的{K _key;BSTnode<K>* _left;BSTnode<K>* _right;BSTnode(const K& key):_key(key…

【C++】12.string类的使用

文章目录 1. 为什么学习string类&#xff1f;1.1 C语言中的字符串1.2 两个面试题(暂不做讲解) 2. 标准库中的string类2.1 string类(了解)2.2 auto和范围for 3. 查看技术文档4. string的访问5. 如何读取每个字符呢&#xff1f;6. auto语法糖&#xff08;C11&#xff09;7. 范围f…

spring boot 2.7整合Elasticsearch Java client + ingest attachment实现文档解析

一、软件环境 软件版本号备注Spring boot2.7.23.x版本建议使用ElasticSearch8.xElasticSearch7.17.4ElasticSearch 7.x 可使用JDK 8 ElasticSearch 8.x 要求使用JDK 11 二、安装ElasticSearch 下载地址&#xff1a;https://artifacts.elastic.co/downloads/elasticsearch/el…

网站建设中,虚拟主机的各项指标和参数

虚拟主机的各项指标和参数主要包括空间大小、并发连接数、带宽限制、流量限制、CPU限制、内存以及IO速度等。以下是对这些指标和参数的详细介绍&#xff1a; 空间大小&#xff1a;空间大小通常以MB或GB为单位&#xff0c;表示虚拟主机可以容纳的数据量。例如&#xff0c;一个1…

地级市-城市创业活跃度(每百人新创企业数)(2000-2021年)

城市创业活跃度通常指一个城市在一定时期内新创企业的数量和质量&#xff0c;它反映了城市的创业环境、创业者的积极性和创造力。根据中的研究&#xff0c;创业活跃度&#xff08;Entre_Activation&#xff09;作为反映区域层面创业活动积极程度的核心指标&#xff0c;被广泛用…

【Vue】Vue扫盲(二)指令:v-for 、v-if、v-else-if、v-else、v-show

【Vue】Vue扫盲&#xff08;一&#xff09;事件标签、事件修饰符&#xff1a;click.prevent click.stop click.stop.prevent、按键修饰符、及常用指令 文章目录 一、v-for遍历数组数组角标遍历对象&#xff1a;Key作用介绍 二、v-if、v-show基本用法&#xff1a;案例&#xff1…

【unity框架开发12】从零手搓unity存档存储数据持久化系统,实现对存档的创建,获取,保存,加载,删除,缓存,加密,支持多存档

文章目录 前言一、Unity对Json数据的操作方法一、JsonUtility方法二、Newtonsoft 二、持久化的数据路径三、数据加密/解密加密方法解密方法 四、条件编译指令限制仅在编辑器模式下进行加密/解密四、数据持久化管理器1、存档工具类2、一个存档数据3、存档系统数据类4、数据存档存…

【Photoshop——肤色变白——曲线】

1. 三通道曲线原理 在使用RGB曲线调整肤色时&#xff0c;你可以通过调整红、绿、蓝三个通道的曲线来实现黄皮肤到白皮肤的转变。 黄皮肤通常含有较多的红色和黄色。通过减少这些颜色的量&#xff0c;可以使肤色看起来更白。 具体步骤如下&#xff1a; 打开图像并创建曲线调…

几何完备的3D分子生成/优化扩散模型 GCDM-SBDD - 评测

GCDM 是一个新的 3D 分子生成扩散模型&#xff0c;与之前的 EDM 相比&#xff0c;GCDM 优化了其中的图神神经网络部分&#xff0c;使用手性敏感的 SE3 等变神经网络 GCPNET 代替了 EDM 中的 EGNN&#xff0c;让节点间消息传递、聚合根据手性不同而进行。本文对 GCDM-SBDD&#…

DMN决策引擎入门知识点

本文主要讲解Camunda是如何使用Dmn决策引擎&#xff0c;体验地址:www.jeecgflow.com Dmn决策表定义 Dmn在线设计 命中策略(Hit Policy) 策略名称策略描述Unique只有一个或者没有规则可以满足。决策表的结果包含满足规则的输出条目。如果超过一个规则满足&#xff0c;那么就违…