LLM - 配置 ModelScope SWIFT 环境与 Qwen2-VL 模型推理 教程 (1)

news2024/11/23 6:22:09

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/142827217

免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。


SWIFT

SWIFT 即 Scalable lightWeight Infrastructure for FineTuning (可扩展轻量级微调基础设施),是高效、轻量级的模型微调和推理框架,支持大语言模型(LLM) 和 多模态大型模型(MLLM) 的训练、推理、评估和部署。可以将 SWIFT 框架直接应用到研究和生产环境中,实现从模型训练和评估到应用的完整工作流程。

1. 配置环境

构建 Conda 环境:

conda create -n swift python=3.10
conda activate swift
pip3 install torch torchvision torchaudio

验证 Torch 环境:

# python
import torch
print(torch.__version__)
print(torch.cuda.is_available())

使用源码,安装 swift 依赖包:

git clone https://github.com/modelscope/ms-swift.git
cd ms-swift
pip install -e .[llm]

pip install git+https://github.com/huggingface/transformers.git@21fac7abba2a37fae86106f87fcf9974fd1e3830
pip install pyav qwen_vl_utils

安装 LMDeploy 和 vLLM 依赖包:

# 需要依赖 torch<=2.3.1
pip install lmdeploy==0.6.1 -i http://mirrors.aliyun.com/pypi/simple/
# 需要依赖 torch==2.4.0
pip install vllm==0.6.2 -i http://mirrors.aliyun.com/pypi/simple/

注意:优先安装 lmdeploy,再安装 vllm,否则 vllm 无法使用,报错。

2. 准备模型

导出 ModelScope 模型位置的环境变量 MODELSCOPE_CACHE,即:

export MODELSCOPE_CACHE="[your path]/modelscope_models/"

注意:模型是存储在 MODELSCOPE_CACHEhub 文件夹中

目录结构:

[your path]/modelscope_models
├── [4.0K]  AI-ModelScope
│   └── [4.0K]  LaTeX_OCR
├── [4.0K]  hub
│   └── [  33]  qwen -> [your path]/llm/Qwen
├── [4.0K]  offload_cache

之前下载过 Qwen2-VL-7B-Instruct,直接使用 软链接 至 hub 目录,即可:

cd [your path]/modelscope_models/hub
ln -s [your path]/llm/Qwen qwen  # 构建软链接

注意:模型的类型 Qwen 需要小写 qwen

3. 命令行调用模型

直接使用 swift infer 即可调用:

CUDA_VISIBLE_DEVICES=0 swift infer --model_type qwen2-vl-7b-instruct

参考 infer 脚本的全部参数:

python [your path]/llm/ms-swift/swift/cli/infer.py --help

测试文本:

<<< 你是谁?
我是来自阿里云的大规模语言模型,我叫通义千问。

测试图像:

<<< <image><image>这两张图片有什么区别
Input an image path or URL <<< [your path]/llm/vision_test_data/image1.png
Input an image path or URL <<< [your path]/llm/vision_test_data/image2.png
这两张图片的区别在于场景和人物的姿势不同。第一张图片中,人物站在木梯旁边,脚踩在木梯上,脚上穿着一双米色的凉鞋,凉鞋上有花朵装饰。第二张图片中,人物坐在床上,脚上穿着白色的袜子,旁边有一个蓝色的哆啦A梦玩偶。

两张图像,如下:

Image

测试数学:

<<< <image>计算结果是多少
Input an image path or URL <<< [your path]/llm/vision_test_data/math.png

输入复杂的数学运算,即:

Image

输出 (非常厉害):

首先,我们逐步计算这个表达式:
1.计算除法部分:

  • 6 13 ÷ 9 26 = 6 13 × 26 9 = 6 × 26 13 × 9 = 2 × 26 13 × 3 = 52 39 = 4 3 \frac{6}{13} \div \frac{9}{26} = \frac{6}{13} \times \frac{26}{9} = \frac{6 \times 26}{13 \times 9} = \frac{2 \times 26}{13 \times 3} = \frac{52}{39} = \frac{4}{3} 136÷269=136×926=13×96×26=13×32×26=3952=34
  • 18 35 ÷ 0.6 × 2 3 = 18 35 ÷ 3 5 × 2 3 = 18 35 × 5 3 × 2 3 = 18 × 5 × 2 35 × 3 × 3 = 180 315 = 4 7 \frac{18}{35} \div 0.6 \times \frac{2}{3} = \frac{18}{35} \div \frac{3}{5} \times \frac{2}{3} = \frac{18}{35} \times \frac{5}{3} \times \frac{2}{3} = \frac{18 \times 5 \times 2}{35 \times 3 \times 3} = \frac{180}{315} = \frac{4}{7} 3518÷0.6×32=3518÷53×32=3518×35×32=35×3×318×5×2=315180=74

2.现在,我们将这些结果代入原始表达式:

  • 2 − 4 3 − 2 3 + 4 7 2 - \frac{4}{3} - \frac{2}{3} + \frac{4}{7} 23432+74

3.将分数转换为相同的分母,以便进行加减运算:

  • 2 − 4 3 − 2 3 + 4 7 = 14 7 − 4 3 − 2 3 + 4 7 2 - \frac{4}{3} - \frac{2}{3} + \frac{4}{7} = \frac{14}{7} - \frac{4}{3} - \frac{2}{3} + \frac{4}{7} 23432+74=7143432+74

4.将分数相加:

  • 14 7 + 4 7 = 18 7 \frac{14}{7} + \frac{4}{7} = \frac{18}{7} 714+74=718
  • − 4 3 − 2 3 = − 6 3 = − 2 -\frac{4}{3} - \frac{2}{3} = -\frac{6}{3} = -2 3432=36=2

5.将结果相减: 18 7 − 2 = 18 7 − 14 7 = 4 7 \frac{18}{7} - 2 = \frac{18}{7} - \frac{14}{7} = \frac{4}{7} 7182=718714=74
所以,计算结果是 4 7 \frac{4}{7} 74

测试OCR:

<<< <image>OCR识别图像文字
Input an image path or URL <<< [your path]/llm/vision_test_data/ocr.png
Top Tips For
Pole Dancing In Heels

测试图像:

Image
测试视频:

<<< <video>描述视频内容
Input a video path or URL <<< [your path]/llm/vision_test_data/video4.mp4
[INFO:swift] Using environment variable `NFRAMES`, Setting nframes: 50.
视频中展示了一位穿着白色裤子和拖鞋的人,她正在用拖鞋摩擦地面,然后将拖鞋放在地上,接着她用拖鞋摩擦地面,最后她将拖鞋放在地上。

注意:避免显存溢出,只使用 50 帧,export NFRAMES=50

视频:

Image

4. 源码调用模型

调用源码:

python my_test.py

参考 my_test.py 源码:

import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'

from swift.llm import (
    get_model_tokenizer, get_template, inference, ModelType,
    get_default_template_type, inference_stream
)
from swift.utils import seed_everything
import torch
print(f"[Info] torch: {torch.__version__}")

model_type = ModelType.qwen2_vl_7b_instruct
template_type = get_default_template_type(model_type)
print(f'template_type: {template_type}')

model, tokenizer = get_model_tokenizer(
    model_type, torch.bfloat16,
    model_kwargs={
        'device_map': 'auto', 
    },
)
model.generation_config.max_new_tokens = 256
template = get_template(template_type, tokenizer)
seed_everything(42)

query = """<img>[your path]/llm/vision_test_data/image2.png</img>女孩的袜子是什么颜色?"""
response, history = inference(model, template, query)
print(f'query: {query}')
print(f'response: {response}')

# 流式
query = '女孩在做什么事情?'
gen = inference_stream(model, template, query, history)
print_idx = 0
print(f'query: {query}\nresponse: ', end='')
for response, history in gen:
    delta = response[print_idx:]
    print(delta, end='', flush=True)
    print_idx = len(response)
print()
print(f'history: {history}')

注意:推理 python 不能使用 JupyterLab 调用,会有异常。

输出:

query: <img>[your path]/llm/vision_test_data/image2.png</img>女孩的袜子是什么颜色?
response: 女孩的袜子是白色的。
query: 女孩在做什么事情?
response: 女孩正在弹奏一把电吉他。
history: [['<img>[your path]/llm/vision_test_data/image2.png</img>女孩的袜子是什么颜色?', '女孩的袜子是白色的。'], ['女孩在做什么事情?', '女孩正在弹奏一把电吉他。']]

视频:

Image

其他:

  • 视频处理工具:视频下载、视频帧
  • 参考文档: ModelScope - SWIFT

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2211542.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

AI 工具大比拼:ChatGPT 与豆包的魅力与未来展望

&#x1f9d1; 博主简介&#xff1a;历代文学网&#xff08;PC端可以访问&#xff1a;https://literature.sinhy.com/#/literature?__c1000&#xff0c;移动端可微信小程序搜索“历代文学”&#xff09;总架构师&#xff0c;15年工作经验&#xff0c;精通Java编程&#xff0c;…

C++的类和动态内存分配(深拷贝与浅拷贝)并实现自己的string类

首先&#xff0c;我们先写一个并不完美的类&#xff1a; #include<iostream> #include<cstring> using namespace std;class Mystring{private:char *p;int len;static int num;friend ostream& operator<<(ostream& os, const Mystring& c);pu…

QT开发--多线程

第十四章 多线程 QThread 是 Qt 中实现多线程编程的核心类&#xff0c;提供跨平台线程管理。 使用 QThread 有两种方法&#xff1a; 1、 继承 QThread&#xff1a;重写 run() 方法&#xff0c;实现线程的具体操作。Qt4.8 之前较常用。 2、 使用 QObject 和 moveToThread()&…

2024-10-13 NO.1 Quest3 激活教程

文章目录 1 下载 Occlus 助手2 打开 quest 热点3 Quest3 连接 wifi4 详细文档5 参考教程 1 下载 Occlus 助手 ​ 网址&#xff1a;https://ochelper.xlemon.cn/home.html。 2 打开 quest 热点 ​ 下载 Occlus 助手后&#xff0c;双击 exe 文件打开。 ​ 过程中按照程序提示执…

各类排序详解

前言 本篇博客将为大家介绍各类排序算法&#xff0c;大家知道&#xff0c;在我们生活中&#xff0c;排序其实是一件很重要的事&#xff0c;我们在网上购物&#xff0c;需要根据不同的需求进行排序&#xff0c;异或是我们在高考完报志愿时&#xff0c;需要看看院校的排名&#…

【动手学深度学习】6.2 图像卷积(个人向笔记)

1. 互相关运算 严格来说&#xff0c;卷积层是一个错误的叫法&#xff0c;因为它本质上是互相关运算而不是卷积运算。我们暂时忽略通道看看二维图像数据和隐藏表示。那么输出大小可以表示为 我们自己实现一个二维互相关运算 2. 卷积层 卷积层中有两个参数&#xff1a;卷积核权…

Medieval Kingdom UI 中世纪王国AAA级UI游戏界面

这款中世纪王国风格的大型素材包包含大量绘图、图标、用户界面(UI)元素、完整的世界地图和文明图标。它将助您打造一款游戏,或为您的3D游戏增添亮点。您还可以为对话制作国王的动画,为4K游戏创建独特的面板和窗口。提供两种独特皮肤:经典(冷色调)和白金(暖色调)。 素…

国家基本药物目录数据库查询3种方法(2018、2012、2009年版)

国家基本药物目录是一份由国家卫生健康委员会等相关部门制定的药品清单&#xff0c;旨在满足国家公共卫生需求&#xff0c;保障基本医疗服务。该目录包括了多种药品&#xff0c;覆盖了不同的疾病治疗领域&#xff0c;如抗生素、心血管药物、神经系统药物、抗肿瘤药物、维生素和…

STM32 -- USB CDC 虚拟串口通信

本篇操作: 通过CubeMX Keil&#xff0c;配置STM32作为USB设备端&#xff0c;与电脑上位机进行通信&#xff08;CDC&#xff09;&#xff1b;通用带USB功能的 STM32 芯片 &#xff08;如F1、F4等&#xff0c;系统时钟配置不同&#xff0c;代码通用&#xff09;。 目录 一、 S…

[论文精读]Active and Semi-Supervised Graph Neural Networks for Graph Classification

论文网址&#xff1a;Active and Semi-Supervised Graph Neural Networks for Graph Classification | IEEE Journals & Magazine | IEEE Xplore英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若…

大数据-168 Elasticsearch 单机云服务器部署运行 详细流程

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; 目前已经更新到了&#xff1a; Hadoop&#xff08;已更完&#xff09;HDFS&#xff08;已更完&#xff09;MapReduce&#xff08;已更完&am…

PyQt: QMessageBox Duplication

在使用 PyQt 的 QMessageBox 时&#xff0c;如果你遇到 消息框重复显示 或 QMessageBox 重复实例化 的问题&#xff0c;通常是因为消息框没有正确管理或关闭&#xff0c;或者消息框的创建和显示逻辑中存在重复调用。以下是一些常见原因和解决方案。 1、问题背景 在 PyQt 中使用…

无心剑七绝《泊院雕楼》

七绝泊院雕楼 清歌咏尽桂花香 泊院雕楼醉夕阳 逸兴无端飞万里 幽情宛转忆潇湘 2024年10月13日 平水韵七阳平韵 这首七绝《泊院雕楼》以清新脱俗的语言&#xff0c;描绘了一幅宁静致远的画面。 首句“清歌咏尽桂花香”&#xff0c;以“清歌”起兴&#xff0c;形象地描绘了桂花香…

C++——类和对象(三)

一.赋值运算符 1.运算符重载 (1) 运算符重载是具有特殊名字的函数&#xff0c;他的名字是由operator和后面要定义的运算符共同构成。和其他函数一样&#xff0c;它也具有其返回类型和参数列表以及函数体。 (2) 重载运算符函数的参数个数和该运算符作用的运算对象数量一样多。…

React.createRef(),React.forwardRef(),forwardRef()结合next.js的link进行路由跳转

码云https://gitee.com/skyvilm/react-next.js 1.React.createRef() 作用&#xff1a;获取dom元素 使用 import React,{Component} from react export default class Index extends Componen{ constructor(props){ super(props) this.myrefReact.createRef(); //创建节点 } c…

如何批量从sql语句中提取表名

简介 使用的卢易表 的提取表名功能&#xff0c;可以从sql语句中批量提取表名。采用纯文本sql语法分析&#xff0c;无需连接数据库&#xff0c;支持从含非sql语句的文件文件中提取&#xff0c;支持各类数据库sql语法。 特点 快&#xff1a;从成百个文件中提取上千个表名只需1…

集成方案 | 借助 Microsoft Copilot for Sales 与 Docusign,加速销售流程!

加速协议信息提取&#xff0c;随时优化邮件内容~ 在当今信息爆炸的时代&#xff0c;销售人员掌握着丰富的数据资源。他们能够通过 CRM 平台、电子邮件、合同库以及其他多种记录系统&#xff0c;随时检索特定个人或组织的关键信息。这些数据对于销售沟通至关重要。然而&#x…

【端到端】CVPR 2023最佳论文:UniAD解读

作者&#xff1a;知乎一根呆毛授权发布 传统的端到端网络是用多个小model串起来&#xff0c;但这会有误差累积的问题&#xff0c;因此我们提出了UniAD&#xff0c;一个综合框架&#xff0c;把所有任务整合到一个网络。整一个网络都是为planner而进行设计的。 Introduction a传…

SQL性能优化指南:如何优化MySQL多表join场景

目录 多表join问题SQL 这里解释下 Using join buffer (Block Nested Loop)&#xff1a; 对性能产生的影响&#xff1a; 三种join算法介绍 join操作主要使用以下几种算法&#xff1a; &#xff08;1&#xff09;Nested Loop Join &#xff08;2&#xff09;Block Nested …

生信服务器配置:优化生物信息学数据处理的最佳实践

介绍 在生物信息学研究中&#xff0c;处理和分析大规模数据集&#xff08;如基因组、转录组和蛋白质组数据&#xff09;需要强大的计算资源和精确的服务器配置。生信服务器配置的优化可以显著提高数据处理的效率和结果的准确性。本文将探讨生信服务器配置的关键要素&#xff0…