YOLO11改进 | 注意力机制 | 用于增强小目标感受野的RFEM

news2025/1/11 12:43:50

 秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


近年来,基于深度学习的人脸检测算法取得了很大进步。这些算法大致可以分为两类,即类似于Faster R-CNN的两阶段检测器和类似于YOLO的一阶段检测器。由于在一阶段检测器中准确性和速度之间有更好的平衡,因此它们被广泛应用于许多应用中。本文介绍了一个名为RFE的感受野增强模块,用于增强小目标的感受野。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

专栏地址:YOLO11入门 + 改进涨点——点击即可跳转 欢迎订阅

目录

1. 论文

2. RFEM的代码实现

2.1 将RFEM添加到YOLO11中

2.2 更改init.py文件

2.3 添加yaml文件

2.4 在task.py中进行注册

2.5 执行程序

3.修改后的网络结构图

4. 完整代码分享

5. GFLOPs

6. 进阶

7.总结


1. 论文

论文地址:YOLO-FaceV2: A Scale and Occlusion Aware Face Detector——点击即可跳转

官方代码:官方代码仓库——点击即可跳转

2. RFEM的代码实现

2.1 将RFEM添加到YOLO11中

关键步骤一: 将下面代码粘贴到在/ultralytics/ultralytics/nn/modules/block.py中


class CBLinear(nn.Module):
    """CBLinear."""

    def __init__(self, c1, c2s, k=1, s=1, p=None, g=1):
        """Initializes the CBLinear module, passing inputs unchanged."""
        super(CBLinear, self).__init__()
        self.c2s = c2s
        self.conv = nn.Conv2d(c1, sum(c2s), k, s, autopad(k, p), groups=g, bias=True)

    def forward(self, x):
        """Forward pass through CBLinear layer."""
        outs = self.conv(x).split(self.c2s, dim=1)
        return outs


class CBFuse(nn.Module):
    """CBFuse."""

    def __init__(self, idx):
        """Initializes CBFuse module with layer index for selective feature fusion."""
        super(CBFuse, self).__init__()
        self.idx = idx

    def forward(self, xs):
        """Forward pass through CBFuse layer."""
        target_size = xs[-1].shape[2:]
        res = [F.interpolate(x[self.idx[i]], size=target_size, mode="nearest") for i, x in enumerate(xs[:-1])]
        out = torch.sum(torch.stack(res + xs[-1:]), dim=0)
        return out

class TridentBlock(nn.Module):
    def __init__(self, c1, c2, stride=1, c=False, e=0.5, padding=None, dilate=None, bias=False):
        super(TridentBlock, self).__init__()
        if padding is None:
            padding = [1, 2, 3]
        if dilate is None:
            dilate = [1, 2, 3]
        self.stride = stride
        self.c = c
        c_ = int(c2 * e)
        self.padding = padding
        self.dilate = dilate
        self.share_weightconv1 = nn.Parameter(torch.Tensor(c_, c1, 1, 1))
        self.share_weightconv2 = nn.Parameter(torch.Tensor(c2, c_, 3, 3))

        self.bn1 = nn.BatchNorm2d(c_)
        self.bn2 = nn.BatchNorm2d(c2)

        self.act = nn.SiLU()

        nn.init.kaiming_uniform_(self.share_weightconv1, nonlinearity="relu")
        nn.init.kaiming_uniform_(self.share_weightconv2, nonlinearity="relu")

        if bias:
            self.bias = nn.Parameter(torch.Tensor(c2))
        else:
            self.bias = None

        if self.bias is not None:
            nn.init.constant_(self.bias, 0)

    def forward_for_small(self, x):
        residual = x
        out = nn.functional.conv2d(x, self.share_weightconv1, bias=self.bias)
        out = self.bn1(out)
        out = self.act(out)

        out = nn.functional.conv2d(out, self.share_weightconv2, bias=self.bias, stride=self.stride,
                                   padding=self.padding[0],
                                   dilation=self.dilate[0])
        out = self.bn2(out)
        out += residual
        out = self.act(out)

        return out

    def forward_for_middle(self, x):
        residual = x
        out = nn.functional.conv2d(x, self.share_weightconv1, bias=self.bias)
        out = self.bn1(out)
        out = self.act(out)

        out = nn.functional.conv2d(out, self.share_weightconv2, bias=self.bias, stride=self.stride,
                                   padding=self.padding[1],
                                   dilation=self.dilate[1])
        out = self.bn2(out)
        out += residual
        out = self.act(out)

        return out

    def forward_for_big(self, x):
        residual = x
        out = nn.functional.conv2d(x, self.share_weightconv1, bias=self.bias)
        out = self.bn1(out)
        out = self.act(out)

        out = nn.functional.conv2d(out, self.share_weightconv2, bias=self.bias, stride=self.stride,
                                   padding=self.padding[2],
                                   dilation=self.dilate[2])
        out = self.bn2(out)
        out += residual
        out = self.act(out)

        return out

    def forward(self, x):
        xm = x
        base_feat = []
        if self.c is not False:
            x1 = self.forward_for_small(x)
            x2 = self.forward_for_middle(x)
            x3 = self.forward_for_big(x)
        else:
            x1 = self.forward_for_small(xm[0])
            x2 = self.forward_for_middle(xm[1])
            x3 = self.forward_for_big(xm[2])

        base_feat.append(x1)
        base_feat.append(x2)
        base_feat.append(x3)

        return base_feat


class RFEM(nn.Module):
    def __init__(self, c1, c2, n=1, e=0.5, stride=1):
        super(RFEM, self).__init__()
        c = True
        layers = [TridentBlock(c1, c2, stride=stride, c=c, e=e)]
        c1 = c2
        for i in range(1, n):
            layers.append(TridentBlock(c1, c2))
        self.layer = nn.Sequential(*layers)
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.SiLU()

    def forward(self, x):
        out = self.layer(x)
        out = out[0] + out[1] + out[2] + x
        out = self.act(self.bn(out))
        return out

2.2 更改init.py文件

关键步骤二:修改modules文件夹下的__init__.py文件,先导入函数

然后在下面的__all__中声明函数

2.3 添加yaml文件

关键步骤四:在/ultralytics/ultralytics/cfg/models/11下面新建文件yolo11_RFEM.yaml文件,粘贴下面的内容

  •  目标检测
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10
  - [-1, 1, RFEM, [1024]]

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)
  • 语义分割
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10
  - [-1, 1, RFEM, [1024]]

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)
  • 旋转目标检测
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10
  - [-1, 1, RFEM, [1024]]

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, OBB, [nc, 1]] # Detect(P3, P4, P5)

温馨提示:本文只是对yolo11基础上添加模块,如果要对yolo11n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple。


# YOLO11n
depth_multiple: 0.50  # model depth multiple
width_multiple: 0.25  # layer channel multiple
max_channel:1024
 
# YOLO11s
depth_multiple: 0.50  # model depth multiple
width_multiple: 0.50  # layer channel multiple
max_channel:1024
 
# YOLO11m
depth_multiple: 0.50  # model depth multiple
width_multiple: 1.00  # layer channel multiple
max_channel:512
 
# YOLO11l 
depth_multiple: 1.00  # model depth multiple
width_multiple: 1.00  # layer channel multiple
max_channel:512 
 
# YOLO11x
depth_multiple: 1.00  # model depth multiple
width_multiple: 1.50 # layer channel multiple
max_channel:512

2.4 在task.py中进行注册

关键步骤四:在parse_model函数中进行注册,添加RFEM,

 先在task.py导入函数

然后在task.py文件下找到parse_model这个函数,如下图,添加RFEM,

2.5 执行程序

关键步骤五:在ultralytics文件中新建train.py,将model的参数路径设置为yolo11_RFEM.yaml的路径即可

建议大家写绝对路径,确保一定能找到

from ultralytics import YOLO
import warnings
warnings.filterwarnings('ignore')
from pathlib import Path
 
if __name__ == '__main__':
 
 
    # 加载模型
    model = YOLO("ultralytics/cfg/11/yolo11.yaml")  # 你要选择的模型yaml文件地址
    # Use the model
    results = model.train(data=r"你的数据集的yaml文件地址",
                          epochs=100, batch=16, imgsz=640, workers=4, name=Path(model.cfg).stem)  # 训练模型

 🚀运行程序,如果出现下面的内容则说明添加成功🚀 

                   from  n    params  module                                       arguments
  0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  2                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
  3                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
  4                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
  5                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
  6                  -1  1     87040  ultralytics.nn.modules.block.C3k2            [128, 128, 1, True]
  7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
  8                  -1  1    346112  ultralytics.nn.modules.block.C3k2            [256, 256, 1, True]
  9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 10                  -1  1    249728  ultralytics.nn.modules.block.C2PSA           [256, 256, 1]
 11                  -1  1    328960  ultralytics.nn.modules.block.RFEM            [256, 256]
 12                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 13             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 14                  -1  1    111296  ultralytics.nn.modules.block.C3k2            [384, 128, 1, False]
 15                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 16             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 17                  -1  1     32096  ultralytics.nn.modules.block.C3k2            [256, 64, 1, False]
 18                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 19            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 20                  -1  1    119488  ultralytics.nn.modules.block.C3k2            [448, 128, 1, False]
 21                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 22            [-1, 10]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 23                  -1  1    378880  ultralytics.nn.modules.block.C3k2            [384, 256, 1, True]
 24        [16, 19, 22]  1   1310848  ultralytics.nn.modules.head.Detect           [80, [256, 448, 384]]
YOLO11_RFEM summary: 327 layers, 3,831,744 parameters, 3,831,728 gradients, 11.3 GFLOPs

3.修改后的网络结构图

4. 完整代码分享

这个后期补充吧~,先按照步骤来即可

5. GFLOPs

关于GFLOPs的计算方式可以查看百面算法工程师 | 卷积基础知识——Convolution

未改进的YOLO11n GFLOPs

改进后的GFLOPs

6. 进阶

可以与其他的注意力机制或者损失函数等结合,进一步提升检测效果

7.总结

通过以上的改进方法,我们成功提升了模型的表现。这只是一个开始,未来还有更多优化和技术深挖的空间。在这里,我想隆重向大家推荐我的专栏——《YOLO11改进有效涨点》。这个专栏专注于前沿的深度学习技术,特别是目标检测领域的最新进展,不仅包含对YOLO11的深入解析和改进策略,还会定期更新来自各大顶会(如CVPR、NeurIPS等)的论文复现和实战分享。

为什么订阅我的专栏? ——《YOLO11改进有效涨点》

  1. 前沿技术解读:专栏不仅限于YOLO系列的改进,还会涵盖各类主流与新兴网络的最新研究成果,帮助你紧跟技术潮流。

  2. 详尽的实践分享:所有内容实践性也极强。每次更新都会附带代码和具体的改进步骤,保证每位读者都能迅速上手。

  3. 问题互动与答疑:订阅我的专栏后,你将可以随时向我提问,获取及时的答疑

  4. 实时更新,紧跟行业动态:不定期发布来自全球顶会的最新研究方向和复现实验报告,让你时刻走在技术前沿。

专栏适合人群:

  • 对目标检测、YOLO系列网络有深厚兴趣的同学

  • 希望在用YOLO算法写论文的同学

  • 对YOLO算法感兴趣的同学等

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2210723.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【计算机网络】计算机网络相关术语

文章目录 NAT概述NAT的基本概念NAT的工作原理1. **基本NAT(静态NAT)**2. **动态NAT**3. **NAPT(网络地址端口转换,也称为PAT)** 底层实现原理1. **数据包处理**2. **转换表**3. **超时机制** NAT的优点NAT的缺点总结 P…

vue3 高德地图标注(飞线,呼吸点)效果

装下这两个 npm 忘了具体命令了&#xff0c;百度一下就行 “loca”: “^1.0.1”, “amap/amap-jsapi-loader”: “^1.0.1”, <template><div id"map" style"width: 100%;height: 100%;"></div> </template><script setup> …

linux 下 verilog 简明开发环境附简单实例

author: hjjdebug date: 2024年 10月 12日 星期六 10:34:13 CST descripton: linux 下 verilog 简明开发环境附简单实例 甲: 安装软件 1. sudo apt install iverilog 该包verilog 源代码的编译器iverilog&#xff0c;其输出是可执行的仿真文件格式vvp格式 它可以检查源代码中…

ubuntu20.4环境下gcc-aarch64交叉编译器的安装

交叉编译器&#xff08;Linux环境&#xff09;arm gcc 8.3一共有5个版本&#xff0c;常用的有4个版本&#xff08;另外一个为大端linux版本&#xff09;&#xff0c;分别是32bit裸机版本&#xff08;arm-eabi&#xff09;、64bit裸机版本&#xff08;aarch64-elf&#xff09;、…

4. 单例模式线程安全问题--是否加锁

单例模式线程安全问题--是否加锁 是否加锁问题指什么&#xff1f;解决多线程并发来带的问题继承MonoBehaviour的单例模式不继承MonoBehaviour的单例模式 总结 是否加锁问题指什么&#xff1f; 如果程序当中存在多线程&#xff0c;我们需要考虑当多个线程同时访问同一个内存空间…

【Java】面向UDP接口的网络编程

【Java】面向UDP接口的网络编程 一. 基本通信模型二. APIDatagramSocketDatagramPacket 三. 回显服务器/客户端示例服务器客户端总结 一. 基本通信模型 UDP协议是面向数据报的&#xff0c;因此此处要构建数据报(Datagram)在进行发送。 二. API DatagramSocket DatagramSocke…

Ubuntu 24.04 在 BPI-F3 上通过 SD 卡安装并从 NVME 运行

github 代码&#xff1a; https://github.com/rcman/BPI-F3 Ubuntu 24.04 现在正在我的 BPI-F3 上运行。很快会为 YouTube 制作一个视频。 这应该适用于任何版本的 Linux&#xff0c;仅在 Ubuntu 24.04 上测试过 入门 下载 Bianbu映像并使用您最喜欢的工具将其映像到微型 SD 卡…

进程 vs 线程:你需要知道的关键区别

“大树根深&#xff0c;才能迎风而立。” 进程&#xff1a;计算机中正在执行的程序的实例&#xff0c;它是操作系统进行资源分配的基本单位。 通过写特殊代码&#xff0c;把多个 CPU 核心都能利用起来&#xff0c;这样的代码就称为“并发编程”。 虽然多进程能够解决问题&…

PHP商会招商项目系统一站式服务助力企业腾飞

商会招商项目系统——一站式服务&#xff0c;助力企业腾飞 &#x1f680;&#x1f4bc; &#x1f680; 开篇&#xff1a;企业成长的加速器&#xff0c;商会招商项目系统来袭 在竞争激烈的市场环境中&#xff0c;企业如何快速找到适合自己的发展路径&#xff0c;实现腾飞&…

CUDA(C)磁态蒙特卡洛和传输矩阵多GPU并行计算分析

&#x1f3af;要点 使用英伟达GPU、大都会和并行回火算法模拟蒙特卡洛。使用兰佐斯算法计算传输矩阵特征值。使用 Suzuki-Trotter 公式归一化量子无序系统。算法模型特征&#xff1a;多CUDA线程&#xff0c;多GPU和多任务式并行计算。 &#x1f341;磁态分析角度 Python和MA…

BUUCTF-[2019红帽杯]easyRE(Reverse逆向)

第一步 查壳 如图&#xff0c;无壳&#xff0c;ELF文件 第二步 IDA 64位IDA&#xff0c;无法直定位到主函数F5&#xff0c;所以使用&#xff0c;查找关键字符串定位主函数大法ShiftF12 发现这些关键字符串&#xff0c;双击上图蓝色字符串&#xff0c; 然后交叉引用CtrlX跟踪 …

硬件-示波器-巧用触发功能捕捉不连续的信号波形

文章目录 一&#xff1a;使用示波器的信号触发功能二&#xff1a;介绍示波器触发模式界面2.1 触发模式的AUTO档2.2 触发模式的Normal档&#xff08;普通档&#xff09;2.3 触发模式的single档&#xff08;单次触发档&#xff09; 三&#xff1a;在多通道的情况下&#xff0c;选…

电鳗带来灵感,防潮电源诞生,全打印技术的魅力

大家好&#xff01;今天来了解一项受电鳗启发的防潮完全可打印电源的研究——《A moisture-enabled fully printable power source inspired by electric eels》发表于《PNAS》。随着可穿戴电子设备的发展&#xff0c;对安全、一次性且具成本效益的电源需求大增。传统电池存在不…

react native 与 react.js 的区别

React.js ReactJS是一个 JavaScript 库&#xff0c;支持前端 Web 和在服务器上运行&#xff0c;用于构建用户界面和 Web 应用程序。 它主要重点是Web 开发&#xff0c;遵循可重用组件的概念。 React 的虚拟 DOM 比传统的完全刷新模型更快&#xff0c;因为虚拟 DOM 只刷新页面的…

透过《当音乐停止之后》,理解2008年次贷危机:债务、流动性与资本的无声博弈

金融市场就像是整个经济体的循环系统&#xff0c;现代经济体依赖各种授信机制输送营养到整个系统&#xff0c;维持经济的正常运转。书中揭示了2008年次贷危机的背景&#xff0c;以及量化宽松&#xff08;QE&#xff09;政策的作用。通过作者的讲述&#xff0c;我们真正了解2008…

前端继承:原理、实现方式与应用场景

目录 一、定义 二、语法和实现方式 1.原型链继承 2.构造函数继承 3.组合继承 4.ES6类继承 三、使用方式 四、优点 五、缺点 六、适用场景 一、定义 前端继承是指在面向对象编程中&#xff0c;一个对象可以继承另一个对象的属性和方法。在前端领域&#xff0c;通常是指…

HC32F460KETA PETB JATA 工业 自动化 电机

HC32F460 系列是基于 ARM Cortex-M4 32-bit RISC CPU&#xff0c;最高工作频率 200MHz 的高性能 MCU。Cortex-M4 内核集成了浮点运算单元&#xff08;FPU&#xff09;和 DSP&#xff0c;实现单精度浮点算术运算&#xff0c;支持 所有 ARM 单精度数据处理指令和数据类型&#xf…

【精选】基于javaweb的流浪动物领养系统(源码+定制+开发)

博主介绍&#xff1a; ✌我是阿龙&#xff0c;一名专注于Java技术领域的程序员&#xff0c;全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师&#xff0c;我在计算机毕业设计开发方面积累了丰富的经验。同时&#xff0c;我也是掘金、华为云、阿里云、InfoQ等平台…

centos系列图形化 VNC server配置,及VNC viewer连接,2024年亲测有效

centos系列图形化 VNC server配置&#xff0c;及VNC viewer连接 0.VNC服务介绍 VNC英文全称为Virtual Network Computing&#xff0c;可以位操作系统提供图形接口连接方式&#xff0c;简单的来说就是一款桌面共享应用&#xff0c;类似于qq的远程连接。该服务是基于C/S模型的。…

鸿蒙NEXT开发-知乎评论小案例(基于最新api12稳定版)

注意&#xff1a;博主有个鸿蒙专栏&#xff0c;里面从上到下有关于鸿蒙next的教学文档&#xff0c;大家感兴趣可以学习下 如果大家觉得博主文章写的好的话&#xff0c;可以点下关注&#xff0c;博主会一直更新鸿蒙next相关知识 专栏地址: https://blog.csdn.net/qq_56760790/…