C#|.net core 基础 - 删除字符串最后一个字符的七大类N种实现方式

news2024/10/26 5:26:41

今天想通过和大家分享如何删除字符串最后一个字符的N种实现方法,来回顾一些基础知识点。

01第一类、字符串方式

这类方法是通过string类型自身方法直接实现。

1、Substring方法

相信大多数人第一个想到的可能就是这个方法。Substring方法是字符串内置方法,可以通过指定起始索引位置为0以及长度为字符串长度减1,直接截取指定长度的子字符串,从而达到删除最后一个字符目的。

示例代码如下:

public static string StringSubstring(string source)
{
    return source.Substring(0, source.Length - 1);
}

2、范围运算符

这个方法可以说是最简洁的方法,可能大家用的不是很多。范围运算符是从C# 8开始支持的。它的形式如:variate[start…end],指定某一索引范围的开头和末尾作为其操作数。左侧操作数是范围的包含性开头。右侧操作数是范围的不包含性末尾。任一操作数都可以是序列开头或末尾的索引。

下面列举了表达集合范围的各种方法:

在这里插入图片描述

范围运算符也适用于字符串,实现代码如下:

public static string StringRangeOperator(string source)
{
    return source[..^1];
}

3、Remove方法

Remove方法是字符串内置方法,可以删除从指定起始索引位置起到结尾的所有字符,因此可以把起始索引定为最后一个字符,从而达到删除最后一个字符目的。

示例代码如下:

public static string StringRemove(string source)
{
    return source.Remove(source.Length - 1);
}

4、Create方法

Create方法是字符串的静态方法,这个方法相信大家用的比较少,其作用是创建一个具有特定长度的新字符串,并在创建后使用指定的回调对其进行初始化。下面我们直接看下实现代码:

public static string StringCreate(string source)
{
    return string.Create(source.Length - 1, source, (span, state) =>
    {
        for (var i = 0; i < state.Length - 1; i++)
        {
            span[i] = state[i];
        }
    });
}

下面对上面代码做个简单解释,第一个参数source.Length - 1是创建比原字符串长度少1位的目标字符串;第二个参数source是把原字符串当作参数传入,用于给第三个参数使用;第三个参数是一个两个参数无返回值委托,其中span参数表示目标字符串对应的Span,state参数表示原字符串即第二个参数值,for循环即是把原字符串字符循环赋值给目标字符串。

5、小结

上面四种方法主要是使用了字符串自身的内置方法进行操作,下面我们对四个方法进行三组对比性能测试,每组分别为长度为100、1000、10000的字符串。

在这里插入图片描述

通过测试结果不难发现,除了Create方法,其他三个方法差别不大,综合来看可以说Remove最优。

02第二类、StringBuilder方式

如果需要对大量字符串操作,相信大家会立即想到用StringBuilder来进行性能优化,下面简单介绍两种使用StringBuilder方式来删除字符串最后一个字符。

1、Append方法

字符串就相当于字符数组,因此我们可以循环字符串,然后使用StringBuilder的Append方法进行拼接,实现代码如下:

public static string StringBuilderAppend(string source)
{
    var sb = new StringBuilder();
    for (var i = 0; i < source.Length - 1; i++)
    {
        sb.Append(source[i]);
    }
    return sb.ToString();
}

2、Length方式

相信大家看到这个标题应该比较疑惑,这是什么意思,我们先看代码再讲解:

public static string StringBuilderLength(string source)
{
    var sb = new StringBuilder(source);
    sb.Length--;
    return sb.ToString();
}

首先第一行代码表示通过原字符串创建一个可变字符串;重点就在第二行,直接对StringBuilder长度执行减1操作;最后再把StringBuilder转为字符串返回。

首先StringBuilder的Length属性表示当前可变字符串包含的字符数,当对其进行减1操作时,相当于告诉StringBuilder对象忽略最后一个字符,其内部并没有真的删除任何字符,被忽略的字符仍包含再StringBuilder对象内部,只是不再将其视为字符串的一部分,因此在调用.ToString方法时返回的就是我们想要的字符串。

3、小结

下面我们对两个方法进行三组对比性能测试,每组分别为长度为100、1000、10000的字符串。

在这里插入图片描述

通过这组测试结果很容易发现,直接操作Length属性性能显著优越于Append方法,但是和字符串直接操作的方式相比还差了不少。

03第三类、Array方式

上面我们提到字符串相当于字符数组,因此我们可以直接使用数组相应的方法。

1、For方法

我们可以直接构建一个目标字符数组,然后把原字符串中相应的字符复制到新字符数组中,最后把新字符数组转成字符串返回即可,代码如下:

public static string ArrayFor(string source)
{
    var chars = new char[source.Length - 1];
    for (var i = 0; i < chars.Length; i++)
    {
        chars[i] = source[i];
    }
    return new string(chars);
}

2、Resize 方法

这个方法大家可能用的比较少,它可以把数组元素个数更改为指定的大小。其思想有点像上面StringBuilder对象直接修改Length属性。下面直接看看代码:

public static string ArrayResize(string source)
{
    var chars = source.ToCharArray();
    Array.Resize(ref chars, chars.Length - 1);
    return new string(chars);
}

3、CopyTo方法

这个方法相信大家应该有点影响,我们前面的文章也有提到过。简单来说就是把原数组复制到目标数组中,代码如下:

public static string ArrayCopyTo(string source)
{
    var chars = new char[source.Length - 1];
    source.CopyTo(0, chars, 0, chars.Length);
    return new string(chars);
}

4、String方式

String方式是值当把原字符串转换为字符数组后,直接使用String构造方法从字符数组中指定位置处开始并指定长度,来获取我们想要的结果。代码如下:

public static string ArrayString(string source)
{
    var chars = source.ToCharArray();
    return new string(chars, 0, chars.Length - 1);
}

其中字符串构造函数第一个参数表示字符数组,第二个参数表示从字符数组第0个索引开始,第三个参数表示取字符数组的元素个数。

5、小结

同样对上面四种方法进行三组对比性能测试,每组分别为长度为100、1000、10000的字符串。

在这里插入图片描述

通过测试结果不难发现,CopyTo方法和String方式相对较好,比之StringBuilder方式还要好些。

04第四类、Linq方式

Linq方式的核心思想是通过Linq方法获取目标字符串对应的字符数组,然后再转为字符串返回。

1、Take方法

Take方法主要作用是从序列的开头返回指定数目的连续元素,因此代码实现如下:

public static string LinqTake(string source)
{
    return new string(source.Take(source.Length - 1).ToArray());
}

2、SkipLast方法

SkipLast方法是从C# 8才开始有的,其作用是返回集合排除最后指定个数的元素外的所有元素。

public static string LinqSkipLast(string source)
{
    return new string(source.SkipLast(1).ToArray());
}

3、Range + Select方法

Range方法相信大家用的也比较少,其作用是生成指定范围内的整数序列。我们先来看代码然后再做解释:

public static string LinqRange(string source)
{
    return new string(Enumerable.Range(0, source.Length - 1).Select(i => source[i]).ToArray());
}

这里Range方法相当于生成了目标字符串索引序列,即[0… source.Length - 1],然后再通过Seletc方法取原字符串相应的字符,最后得到结果。

4、小结

同样对上面三种方法进行三组对比性能测试,每组分别为长度为100、1000、10000的字符串。

在这里插入图片描述

通过测试结果不难发现,Range + Select方法相对较好,但是比之前几类方法就差的太远了。

05第五类、Linq + String组合方式

这类方法是通过Linq方法和字符串方法组合的方式实现。

1、Concat方法

Concat方法是字符串的静态方法可以连接多个字符成为一个新的字符串,然后通过Linq的SkipLast方法配合达到我们的目的,代码如下:

public static string LinqStringConcat(string source)
{
    return string.Concat(source.SkipLast(1));
}

2、Join方法

Join方法也是字符串的静态方法,主要作用是使用指定的分隔符连接集合的成员。因此也可以达到Concat类似的效果。

public static string LinqStringJoin(string source)
{
    return string.Join("", source.SkipLast(1));
}

3、小结

下面我们对两个方法进行三组对比性能测试,每组分别为长度为100、1000、10000的字符串。

在这里插入图片描述

通过这组测试结果说明两者相差不大,相对于之前的方法更差了。

06第六类、数据视图方式

数据视图方式的核心思想是通过Span、Memory和ArraySegment实现。

1、AsSpan方法

Span是一个轻量级的、非托管的视图,用于表示连续的内存块。它可以直接操作栈上的内存。AsSpan方法可以通过指定起始索引和长度,直接在原字符串上获取到目标字符串视图,然后转成字符串返回,代码实现如下:

public static string Span(string source)
{
    var span = source.AsSpan(0, source.Length - 1);
    return new string(span);
}

2、AsMemory方法

Memory也是一个内存视图,但与 Span 不同,它可以存储在 heap 上。AsMemory方法用法和AsSpan方法类似,代码如下:

public static string Memory(string source)
{
    var memory = source.AsMemory(0, source.Length - 1);
    return new string(memory.Span);
}

3、ArraySegment方法

ArraySegment封装了对数组的一部分的引用,并维护了该部分的起始位置和长度。

public static string ArraySegment(string source)
{
    var segment = new ArraySegment<char>(source.ToCharArray(), 0, source.Length - 1);
    return new string(segment.Array, segment.Offset, segment.Count);
}

4、小结

同样对上面三种方法进行三组对比性能测试,每组分别为长度为100、1000、10000的字符串。

在这里插入图片描述

通过测试结果可以发现,三种方法性能都是相当高,当然其中ArraySegment方法相对要差一些。总统来说数据视图方式已经和第一类字符串方式不相上下了。

07第七类、正则表达式方式

这里解释两种正则表达式实现的方法。

1、Replace方法

Replace方法是Regex的静态方法,代码如下:

public static string RegexReplace(string source)
{
    return Regex.Replace(source, ".$", "");
}

2、Match方法

Match方法也是Regex的静态方法,代码如下:

public static string RegexMatch(string source)
{
    var match = Regex.Match(source, @"^(.*).$");
    return match.Groups[1].Value;
}

3、小结

下面我们对两个方法进行三组对比性能测试,每组分别为长度为100、1000、10000的字符串。

在这里插入图片描述

通过这组测试结果说明两者相差不大,相对于之前的方法性能差别居中。

从整体来看,使用第一类字符串方式性能又高代码又简洁是最优选,而列举了那么多种方法主要目的还是熟悉一些基础方法,虽然在这个案例里不是最优解,但是说不定在其他地方就用的恰到好处。

我们都知道做同样一件事件可能有很多种方法,然后可以选择出一种最优的方法,但是这个前提是你要知道这些方法是什么,你才能有的选。

:测试方法代码以及示例源码都已经上传至代码库,有兴趣的可以看看。https://gitee.com/hugogoos/Planner

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2210555.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于苔藓生长优化算法(Moss Growth Optimization, MGO)的多无人机协同三维路径规划(提供MATLAB代码)

一、苔藓生长优化算法介绍 苔藓生长优化算法&#xff08;Moss Growth Optimization, MGO&#xff09;是一种受自然界苔藓生长机制启发的元启发式优化算法。这种算法模仿了苔藓在潮湿环境中的扩散和生长方式&#xff0c;以寻找复杂问题的最优解。以下是苔藓生长优化算法的一些基…

如何清空回收站后在 Windows 11/10 中恢复已删除的文件

这篇文章将解释如何将已删除的文件、文件夹和其他项目从回收站还原或恢复到原始位置。有时&#xff0c;我们最终会删除重要的文件和文件夹&#xff0c;然后我们不知道如何将它们恢复到原来的位置。但是您不必担心&#xff0c;因为这篇针对初学者的帖子将详细指导您完成所有步骤…

JDK下载与IDEA环境配置

JDK下载与IDEA环境配置 前言 ​ 国庆过后新生也是正式进入小组学习了&#xff0c;我们组有一个学Java的&#xff0c;在使用IDEA时遇到了一些问题&#xff0c;输出会乱码&#xff0c;那这一看肯定是字符集出了问题&#xff0c;但是我看IDEA配置的字符集没有什么问题&#xff0…

第三版大气痕量分子光谱(ATMOS)2 级产品,包含垂直势温(θ)网格上的痕量气体

目录 简介 摘要 代码 引用 网址推荐 0代码在线构建地图应用 机器学习 ATMOS L2 Trace Gases on Potential Temperature Grid, Tab Delimited Format V3 (ATMOSL2TT) at GES DISC 简介 这是第三版大气痕量分子光谱&#xff08;ATMOS&#xff09;2 级产品&#xff0c;包…

电阻分压电路:【图文讲解】

在电子电路中&#xff0c;电阻同样发挥着重要作用&#xff0c;同时也是一个最基本的元器件&#xff0c;电阻在电路中可以起到限流、分流、分压、发热的作用。 本节&#xff0c;我们重点来聊聊电阻的分压电路。如下图&#xff0c;是一个经典的电阻分压电路。 1&#xff1a;电路…

【AAOS】Android Automotive 15模拟器源码下载及编译

源码下载 repo init -u https://android.googlesource.com/platform/manifest -b android-10.0.0_r47 repo sync -c --no-tags --no-clone-bundle 源码编译 source build/envsetup.sh lunch aosp_car_x86_64-userdebug make -j8 运行效果 emualtor Home All apps Setting…

TDD(测试驱动开发)是否已死?

Rails 大神、创始人 David Heinemeier Hansson 曾发文抨击TDD。 TDD is dead. Long live testing. (DHH) 此后, Kent Beck、Martin Fowler、David Hansson 三人就这个观点还举行了系列对话&#xff08;辩论&#xff09; Is TDD Dead? 笔者作为一个多年在软件测试领域摸索的人&…

从秒级到小时级:TikTok等发布首篇面向长视频理解的多模态大语言模型全面综述

文章链接&#xff1a;https://arxiv.org/pdf/2409.18938 亮点直击 追踪并总结从图像理解到长视频理解的MM-LLMs的进展;回顾了各种视觉理解任务之间的差异&#xff0c;并强调了长视频理解中的挑战&#xff0c;包括更细粒度的时空细节、动态事件和长期依赖性;详细总结了MM-LLMs在…

整合 Knife4j:提升接口调试效率

整合 Knife4j&#xff1a;提升接口调试效率 Knife4j 是什么&#xff1f; Knife4j 是一个为 Java 项目生成和管理 API 文档的工具。实际上&#xff0c;它是 Swagger UI 的一个增强工具集&#xff0c;旨在让 Swagger 生成的 API 文档更优雅、更强大。 Knife4j 主要功能 美观的…

【LeetCode】动态规划—96. 不同的二叉搜索树(附完整Python/C++代码)

动态规划—96. 不同的二叉搜索树 题目描述前言基本思路1. 问题定义2. 理解问题和递推关系二叉搜索树的性质&#xff1a;核心思路&#xff1a;状态定义&#xff1a;状态转移方程&#xff1a;边界条件&#xff1a; 3. 解决方法动态规划方法&#xff1a;伪代码&#xff1a; 4. 进一…

计算机毕业设计 内蒙古旅游景点数据分析系统的设计与实现 Python毕业设计 Python毕业设计选题 Spark 大数据【附源码+安装调试】

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

FreeRTOS——剖析静态创建任务内部实现

静态创建任务函数 TaskHandle_t xTaskCreateStatic (TaskFunction_t pxTaskCode, /*指向任务函数的指针*/const char *const pcName, /*任务函数名*/const uint32_t ulStackDepth, /*任务堆栈大小注意字为单位*/void *const pvParameters, /*传递的任务函…

数据处理中常见的归一化方法有哪些?为什么要对数据进行归一化?

&#x1f381;&#x1f449;点击进入文心快码 Baidu Comate 官网&#xff0c;体验智能编码之旅&#xff0c;还有超多福利&#xff01;&#x1f381; &#x1f50d;【大厂面试真题】系列&#xff0c;带你攻克大厂面试真题&#xff0c;秒变offer收割机&#xff01; ❓今日问题&am…

Qt-系统QThread多线程介绍使用(62)

目录 描述 相关函数 使用 准备工作 重写run 发送信号 创建一个线程 启动线程 计时器运行流程 多线程运用场景 描述 qt多线程和Linux多线程类似 Linux有自己的一套多线程 API&#xff0c;Qt 也有着自己封装的多线程 API QT多线程参考了JAVA中的设计方式 QThread创建…

总结ES6—ES13新特性

目录 ES6let/const不同特性共同特性不能重复声明作用域提升问题暂时性死区&#xff08; temporal dead zone&#xff09;不添加window形成块级作用域 三者区别 模板字符串解构赋值数组的解构对象的解构 默认参数箭头函数展开运算符数值表示SymbolSetWeakSetMapWeakMapProxy 和 …

Linux Ubuntu dbus CAPI ---- #include<dbus.h>出现“无法打开源文件dbus/xxx.h“的问题

一、确保已安装dbus库和CAPI sudo apt-get install libdbus-1-dev 二、在c_cpp_properties.json的includePath中是否配置了dbus库依赖文件所在的路径 三、编译一个简单的dbus代码&#xff0c;在编译过程中只要出现.h文件找不到的情况&#xff0c;就使用下列命令找到.h文件路径…

【2024最新】基于springboot+vue的体质数据分析及可视化lw+ppt

作者&#xff1a;计算机搬砖家 开发技术&#xff1a;SpringBoot、php、Python、小程序、SSM、Vue、MySQL、JSP、ElementUI等&#xff0c;“文末源码”。 专栏推荐&#xff1a;SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏&#xff1a;Java精选实战项…

【设计模式】揭秘Spring框架:设计模式如何驱动代码重用与扩展性的最佳实践

作者&#xff1a;后端小肥肠 &#x1f347; 我写过的文章中的相关代码放到了gitee&#xff0c;地址&#xff1a;xfc-fdw-cloud: 公共解决方案 &#x1f34a; 有疑问可私信或评论区联系我。 &#x1f951; 创作不易未经允许严禁转载。 姊妹篇&#xff1a; 【设计模式】万字详解…

大数据毕业设计选题推荐-招聘信息数据分析系统-Python数据可视化-Hive-Hadoop-Spark

✨作者主页&#xff1a;IT研究室✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…

02.07.链表相交 最简方法之一

面试题 02.07. 链表相交 已解答 简单 相关标签 相关企业 提示 给你两个单链表的头节点 headA 和 headB &#xff0c;请你找出并返回两个单链表相交的起始节点。如果两个链表没有交点&#xff0c;返回 null 。 图示两个链表在节点 c1 开始相交&#xff1a; 题目数据 保证 整个链…