【万字长文】Word2Vec计算详解(一)CBOW模型

news2024/10/10 11:38:09

【万字长文】Word2Vec计算详解(一)CBOW模型

写在前面

本文用于记录本人学习NLP过程中,学习Word2Vec部分时的详细过程,本文与本人写的其他文章一样,旨在给出Word2Vec模型中的详细计算过程,包括每个模块的计算过程,模块形状变化等,最后给出了Word2Vec的两种优化方法----负采样与分层(层次)Softmax,下面开始介绍。
写到一半时发现字数过多,需要拆分文章QAQ,那就分层三期把,分别介绍CBOW模型,Skip-gram模型,和优化部分。

【万字长文】Word2Vec计算详解(一)CBOW模型 markdown行 9000+
【万字长文】Word2Vec计算详解(二)Skip-gram模型 markdown行 12000+
【万字长文】Word2Vec计算详解(三)分层Softmax与负采样 markdown行 18000+

背景

在自然语言处理(NLP)领域,理解和表示单词之间的语义关系是一个长期存在的问题。传统上,这一挑战通过诸如one-hot编码等简单方法来解决。

one-hot局限性

1. one-hot向量是高维稀疏向量: \textbf{one-hot向量是高维稀疏向量:} one-hot向量是高维稀疏向量:
在one-hot编码中,每个单词都被表示为一个非常长的向量,这个向量的长度等于词汇表中的单词总数。在这个向量中,表示当前单词的位置被标记为1,其余位置均为0。这种表示方法导致了极高的维度和稀疏性。例如,如果词汇表包含10,000个单词,每个单词就会被表示为一个有10,000个元素的向量,其中只有一个元素是1,其余都是0。
2. 无法捕获词之间的语义相似性: \textbf{无法捕获词之间的语义相似性:} 无法捕获词之间的语义相似性:
由于每个单词的向量在只有一个维度上有值,而其他所有维度均为零,因此任何两个不同的单词的向量之间的距离(无论是欧氏距离、余弦相似性还是其他度量)都是相同的。这意味着one-hot编码无法表达单词间的语义关系或相似性。例如,“狗”和“猫”在现实世界中具有较高的语义相似性,因为它们都是宠物,但在one-hot编码中,它们之间的距离与“狗”和“冰箱”之间的距离完全相同。
3. 无法利用上下文信息: \textbf{无法利用上下文信息:} 无法利用上下文信息:
one-hot编码仅仅关注单词的标识,忽略了单词在句子中的上下文环境。单词的语义往往依赖于其使用的上下文,但是one-hot编码无法捕捉这种依赖关系。

随后,更复杂的统计方法被开发出来,用于解决one-hot向量出现的问题 (待补充 o n e − h o t 到 W o r d 2 V e c 之间的一些统计方法 \textcolor{red}{(待补充one-hot到Word2Vec之间的一些统计方法} (待补充onehotWord2Vec之间的一些统计方法。这些方法旨在通过分析词在大量文本中的共现信息来推断词义,但这些方法往往计算量大,效率低,且仍然难以充分捕捉词义的丰富性。

常用的两种Word2Vec模型

2013年,Google开源了一款用于词向量计算的工具——Word2Vec,引起了工业界和学术界的关注。首先,Word2Vec可以在百万数量级的词典和上亿的数据集上进行高效地训练;其次,该工具得到的训练结果——词向量(word embedding),可以很好地度量词与词之间的相似性。Word2Vec算法或模型,其实指的是其背后用于计算word vector的 CBOW 模型和 Skip-gram 模型。Word2Vec 利用浅层神经网络从大量文本中学习低维且密集的词向量表示,这些向量能够有效地捕捉词之间的语义和语法关系。与之前的方法相比,Word2Vec 不仅提高了表示的质量,还显著提升了训练速度和效率。Word2Vec 通过提供一种高效、有效的词表示方法,解决了长期存在的词义表示问题,其影响深远,不仅改进了词义的捕捉能力,也为 NLP 的进一步研究和应用开辟了新的道路。下面将具体介绍 Word2Vec 中的两个模型。

CBOW模型

CBOW(continuous   bag-of-words) \textbf{CBOW(continuous bag-of-words)} CBOW(continuous bag-of-words)模型的核心思想是利用一个词的上下文(即周围的词)来预测这个词本身。在自然语言处理(NLP)领域,理解单词的含义常常需要考虑其上下文,因为上下文提供了关于单词用法和语义的重要线索。

模型结构

CBOW模型的输入是上下文文本单词的one-hot向量,通过线性变换压缩成一个单词向量,然后再通过一次线性变换得到一个单词得分表,最后经过多分类得到要预测的单词。CBOW的模型结构如图下所示。

在这里插入图片描述

预处理

在正式介绍模型输入前,需要简单介绍模型输入前的处理。给定一个语料库 text,我们要将其处理成能够用于模型输入的 one-hot 向量。首先去重,然后将单词与标点符号按读入顺序放入集合corpus,并另外存储一份单词与索引直接查询的字典:word_to_id 和 id_to_word。参考代码程序见附录Word2Vec(一)中的preprocess函数。

随后是将单词集合corpus也就是词汇表Vocabulary转换为 one-hot 表示,具体函数如附录Word2Vec(一)中的convert_one_hot函数。

其中 corpus是单词集合,vocab_size 是单词集合的大小也就是 len(corpus)。这样我们得到了语料库的 one-hot编码。

模型输入

在模型中,将一个词的上下文词表示为独热编码(one-hot encoding)向量然后并作为模型的一个输入。上下文的词的多少取决于窗口大小 C C C,例如当窗口大小为2时,上下文为目标单词的前两个词和后两个词,共4个词。于是我们的输入
X = ( x i − c , x i − c + 1 , … , x i − 1 , x i + 1 , … , x i + c ) ∈ R V × 2 C X = (x_{i-c}, x_{i-c + 1}, \dots, x_{i - 1}, x_{i + 1}, \dots, x_{i + c}) \in \mathbb{R}^{V \times 2C} X=(xic,xic+1,,xi1,xi+1,,xi+c)RV×2C
其中, x i x_i xi为目标单词,其中 x i ∈ R V × 1 x_i \in \mathbb{R}^{V \times 1} xiRV×1 X X X 。例如,目标单词索引 i i i 3 3 3时且窗口大小为 2 2 2时, X = ( x 1 , x 2 , x 4 , x 5 ) X = (x_1, x_2, x_4, x_5) X=(x1,x2,x4,x5)

权重输入层

在这一层,我们将目标单词 x i x_i xi的上下文的 one-hot 编码与隐藏层的权重输入矩阵 W W W 相乘再加上置偏值 b ∈ R D × 1 b \in \mathbb{R}^{D \times 1} bRD×1 得到 x j ′ x_j' xj,即 X j ′ = W X j + b X_j' = W X_j + b Xj=WXj+b, 其中 x j ′ ∈ R D × 1 x_j' \in \mathbb{R}^{D \times 1} xjRD×1 j = ( i − C , i − C + 1 , … , i − 1 , i + 1 , … , i + C ) j = (i-C,i-C+1,\dots,i-1,i+1,\dots,i+C) j=(iC,iC+1,,i1,i+1,,i+C)。写成矩阵的形式为

X ′ = W X + b X' = WX+b X=WX+b

其中, X = [ x i − C , x i − C + 1 , … , x i − 1 , x i + 1 , … , x i + C ] X = [x_{i-C}, x_{i-C+1},\dots,x_{i-1}, x_{i+1},\dots, x_{i+C}] X=[xiC,xiC+1,,xi1,xi+1,,xi+C] X ′ = [ x i − C ′ , x i − C + 1 ′ , … , x i − 1 ′ , x i + 1 ′ , … , x i + C ′ ] X' = [x_{i-C}', x_{i-C+1}',\dots,x_{i-1}', x_{i+1}',\dots, x_{i+C}'] X=[xiC,xiC+1,,xi1,xi+1,,xi+C]

加权平均层

我们将输入层得到的所有 X j ′ X_j' Xj 进行加权平均得到 h h h

h = ∑ j = i − C , j ≠ i i + C x j ′ = 1 2 C ( x i − C ′ + … x i − 1 ′ + x i + 1 ′ + ⋯ + x i + C ′ ) h = \sum\limits^{i+C}_{j = i-C,j \ne i} x_j'= \frac{1}{2C}(x_{i-C}' + \dots x_{i - 1}' + x_{i + 1}' + \dots + x_{i + C}') h=j=iC,j=ii+Cxj=2C1(xiC+xi1+xi+1++xi+C)

其中 C C C 是窗口大小, h ∈ R D × 1 h \in \mathbb{R}^{D \times 1} hRD×1。写成矩阵的形式为

h = 1 2 C X ′ j ⃗ h = \frac{1}{2C} X'\vec{j} h=2C1Xj
其中 j ⃗ = [ 1 , 1 , … , 1 , 1 ] \vec{j}=[1,1,\dots,1,1] j =[1,1,,1,1] 2 C 2C 2C 1 1 1列的向量。

权重输出层

我们将得到 h h h 与隐藏层的权重输出矩阵 W ′ W' W 相乘再加上置偏值 b ′ ∈ R V × 1 b'\in \mathbb{R}^{V \times 1} bRV×1 得到每个单词得分的向量 P P P P = ( P 1 , P 2 , … , P V ) T P = ( P_1, P_2, \dots, P_V)^T P=(P1,P2,,PV)T P i ∈ R P_i \in R PiR 表示为位置索引为 i i i 处的单词的得分。 P ∈ R V × 1 P \in \mathbb{R}^{V \times 1} PRV×1。写成矩阵的形式为
P = W ′ h + b ′ P = W'h + b' P=Wh+b

Softmax层

我们将输出层得到的的得分用 Softmax 处理为概率 P ′ P' P P ′ = ( p 1 ′ , p 2 ′ , … , p V ′ ) T P' = (p_1', p_2', \dots, p_V')^T P=(p1,p2,,pV)T p i ′ p_i' pi 表示位置索引为 i i i 处的单词的概率。其中 P ′ ∈ R V × 1 P' \in \mathbb{R}^{V \times 1} PRV×1。计算公式如下所示。
p i ′ = softmax ( p i ) = exp ⁡ ( p i ) ∑ k = 1 V exp ⁡ ( p k ) p_i' = \text{softmax}(p_i) = \frac{\exp(p_i)}{ \sum\limits_{k=1}^{V} \exp(p_k)} pi=softmax(pi)=k=1Vexp(pk)exp(pi)
其中 P = ( p 1 , p 2 , … , p V ) T P = ( p_1, p_2, \dots, p_V)^T P=(p1,p2,,pV)T p i p_i pi P P P 中的某一项。 P ′ = ( p 1 ′ , p 2 ′ , … , p V ′ ) T P' = (p_1', p_2', \dots, p_V')^T P=(p1,p2,,pV)T p i ′ p_i' pi P ′ P' P 中的某一项。

模型输出

模型的输出是在 P ′ P' P 中取出最大概率对应位置的值设为1,其他位置设置为0,我们将得到一个one-hot编码。从该one-hot编码我们可以找到对应的单词,我们将其作为预测结果单词。这就是CBOW模型的输出。

简单的CBOW例子

下面给定一个例子来解释 CBOW 模型的计算。假设语料库为 text = 'The cat plays in the garden, and the cat chases the mouse in the garden.'我们使用预处理给处给出的函数 preprocess 和 convert_one_hot 进行处理,分别得到以下结果。

index0123456789
x i x_i xi x 0 x_0 x0 x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3 x 4 x_4 x4 x 5 x_5 x5 x 6 x_6 x6 x 7 x_7 x7 x 8 x_8 x8 x 9 x_9 x9
wordthecatplaysingarden,andchasesmouse.

preprocess 函数得到后的结果(词汇表)

由上表展示了词汇表的信息,我们得到词汇表的大小 V = 10 V = 10 V=10。下面是 转换得到的one-hot矩阵我们标记其为 X X X X X X 中对应的一列为相应索引单词的 one-hot向量,即用 x i x_i xi表示该索引位置为 i i i 的one-hot向量。例如 x i = ( 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) x_i=(0,1,0,0,0,0,0,0,0) xi=(0,1,0,0,0,0,0,0,0) 代表“the”。

X o n e h o t = ( x 0 , x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 , x 9 ) [ 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 ] X_{onehot} = (x_0, x_1, x_2,x_3,x_4,x_5,x_6, x_7,x_8,x_9) \begin{bmatrix} 1&0&0&0&0&0&0&0&0&0\\ 0&1&0&0&0&0&0&0&0&0\\ 0&0&1&0&0&0&0&0&0&0\\ 0&0&0&1&0&0&0&0&0&0\\ 0&0&0&0&1&0&0&0&0&0\\ 0&0&0&0&0&1&0&0&0&0\\ 0&0&0&0&0&0&1&0&0&0\\ 0&0&0&0&0&0&0&1&0&0\\ 0&0&0&0&0&0&0&0&1&0\\ 0&0&0&0&0&0&0&0&0&1 \end{bmatrix} Xonehot=(x0,x1,x2,x3,x4,x5,x6,x7,x8,x9) 1000000000010000000000100000000001000000000010000000000100000000001000000000010000000000100000000001

我们假设窗口大小 C = 2 C = 2 C=2,隐藏层的维数 D = 4 D = 4 D=4 ,并且要给定 “plays” 的上下文进行预测。我们可以得到模型输入是 x 0 x_0 x0 x 1 x_1 x1 x 3 x_3 x3 x 0 x_0 x0,对应单词分别为 the、cat、in、the。则 X = ( x 0 , x 1 , x 3 , x 0 ) X = (x_0, x_1, x_3, x_0) X=(x0,x1,x3,x0),在下方展示。 我们对输入权重权重矩阵 W W W 进行初始化, W W W初始值是 [ 0 , 1 ) [0,1) [0,1)之间的随机数,包含0,不包含1。

X = ( x 0 , x 1 , x 3 , x 0 ) = [ 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] , b = [ 0.0513 − 1.1577 0.8167 0.4336 ] X = (x_0, x_1, x_3, x_0) = \begin{bmatrix} 1&0&0&1\\ 0&1&0&0\\ 0&0&0&0\\ 0&0&1&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0 \end{bmatrix} , b = \begin{bmatrix} 0.0513 \\ -1.1577\\ 0.8167 \\ 0.4336 \end{bmatrix} X=(x0,x1,x3,x0)= 1000000000010000000000010000001000000000 ,b= 0.05131.15770.81670.4336

W = [ − 0.2047 0.4789 − 0.5194 − 0.5557 1.9657 1.3934 0.0929 0.2817 0.769 1.2464 1.0071 − 1.2962 0.2749 0.2289 1.3529 0.8864 − 2.0016 − 0.3718 1.669 − 0.4385 − 0.5397 0.4769 3.2489 − 1.0212 − 0.577 0.1241 0.3026 0.5237 0.0009 1.3438 − 0.7135 − 0.8311 − 2.3702 − 1.8607 − 0.8607 0.5601 − 1.2659 0.1198 − 1.0635 0.3328 ] W = \begin{bmatrix} -0.2047 & 0.4789 & -0.5194 & -0.5557 & 1.9657 & 1.3934 & 0.0929 & 0.2817 & 0.769 & 1.2464\\ 1.0071 & -1.2962 & 0.2749 & 0.2289 & 1.3529 & 0.8864 & -2.0016 & -0.3718 & 1.669 & -0.4385\\ -0.5397 & 0.4769 & 3.2489 & -1.0212 & -0.577 & 0.1241 & 0.3026 & 0.5237 & 0.0009 & 1.3438\\ -0.7135 & -0.8311 & -2.3702 & -1.8607 & -0.8607 & 0.5601 & -1.2659 & 0.1198 & -1.0635 & 0.3328 \end{bmatrix} W= 0.20471.00710.53970.71350.47891.29620.47690.83110.51940.27493.24892.37020.55570.22891.02121.86071.96571.35290.5770.86071.39340.88640.12410.56010.09292.00160.30261.26590.28170.37180.52370.11980.7691.6690.00091.06351.24640.43851.34380.3328

接下来是权重输入层的运算。我们将 W W W X X X 进行矩阵乘法运算再加上置偏值 b b b,计算得到 X ′ X' X

X ′ = W X + b = [ − 0.1533 0.5302 − 0.5043 − 0.1533 − 0.1506 − 2.4539 − 0.9288 − 0.1506 0.277 1.2936 − 0.2044 0.277 − 0.2798 − 0.3974 − 1.427 − 0.2798 ] X' = WX + b = \begin{bmatrix} -0.1533 & 0.5302 & -0.5043 & -0.1533\\ -0.1506& -2.4539 & -0.9288& -0.1506\\ 0.277 & 1.2936 & -0.2044 & 0.277 \\ -0.2798 & -0.3974 & -1.427 & -0.2798 \end{bmatrix} X=WX+b= 0.15330.15060.2770.27980.53022.45391.29360.39740.50430.92880.20441.4270.15330.15060.2770.2798

接下来进行加权平均层的计算,也就是将 X ′ X' X每行中的 4 4 4个值进行相加,得到 4 × 1 4 \times 1 4×1 的向量 h h h

h = 1 4 X ′ = 1 4 [ − 0.1533 + 0.5302 − 0.5043 − 0.1533 − 0.1506 − 2.4539 − 0.9288 − 0.1506 0.277 + 1.2936 − 0.2044 + 0.277 − 0.2798 − 0.3974 − 1.427 − 0.2798 ] = [ − 0.0701 − 0.9209 0.4108 − 0.596 ] h = \frac{1}{4} X' = \frac{1}{4} \begin{bmatrix} -0.1533 + 0.5302 - 0.5043 - 0.1533\\ -0.1506 - 2.4539 -0.9288 -0.1506 \\ 0.277 + 1.2936 - 0.2044 + 0.277\\ -0.2798 -0.3974 -1.427 -0.2798 \end{bmatrix} = \begin{bmatrix} -0.0701\\ -0.9209\\ 0.4108\\ -0.596 \end{bmatrix} h=41X=41 0.1533+0.53020.50430.15330.15062.45390.92880.15060.277+1.29360.2044+0.2770.27980.39741.4270.2798 = 0.07010.92090.41080.596

接下来是权重输出层。我们将 W ′ W' W 进行初始化。然后进行运算 W ′ h W'h Wh,然后再加上置偏值 b ′ b' b 得到评分 P P P

W ′ = [ − 2.3594 − 0.1995 − 1.5419 − 0.9707 − 1.307 0.2863 0.3779 − 0.7538 0.3312 1.3497 0.0698 0.2466 − 0.0118 1.0048 1.3271 − 0.9192 − 1.5491 0.0221 0.7583 − 0.6605 0.8625 − 0.01 0.05 0.6702 0.8529 − 0.9558 − 0.0234 − 2.3042 − 0.6524 − 1.2183 − 1.3326 1.0746 0.7236 0.69 1.0015 − 0.503 − 0.6222 − 0.9211 − 0.7262 0.2228 ] , b ′ = [ 1.0107 1.8248 − 0.9975 0.85059 − 0.1315 0.9124 0.1882 2.1694 − 0.1149 2.0037 ] W' =\begin{bmatrix} -2.3594 & -0.1995 & -1.5419 & -0.9707\\ -1.307 & 0.2863 & 0.3779 & -0.7538\\ 0.3312 & 1.3497 & 0.0698 & 0.2466\\ -0.0118 & 1.0048 & 1.3271 & -0.9192\\ -1.5491 & 0.0221 & 0.7583 & -0.6605\\ 0.8625 & -0.01 & 0.05 & 0.6702\\ 0.8529 & -0.9558 & -0.0234 & -2.3042\\ -0.6524 & -1.2183 & -1.3326 & 1.0746\\ 0.7236 & 0.69 & 1.0015 & -0.503 \\ -0.6222 & -0.9211 & -0.7262 & 0.2228 \end{bmatrix}, b' = \begin{bmatrix} 1.0107\\ 1.8248\\ -0.9975\\ 0.85059 \\ -0.1315\\ 0.9124\\ 0.1882\\ 2.1694\\ -0.1149 \\ 2.0037 \end{bmatrix} W= 2.35941.3070.33120.01181.54910.86250.85290.65240.72360.62220.19950.28631.34971.00480.02210.010.95581.21830.690.92111.54190.37790.06981.32710.75830.050.02341.33261.00150.72620.97070.75380.24660.91920.66050.67022.30421.07460.5030.2228 ,b= 1.01071.82480.99750.850590.13150.91240.18822.16940.11492.0037

P = W ′ h + b ′ = [ 1.0107 1.8248 − 0.9975 0.8505 − 0.1315 0.9124 0.1882 2.1694 − 0.1149 2.0037 ] P = W'h + b' = \begin{bmatrix} 1.0107 \\ 1.8248 \\ -0.9975 \\ 0.8505 \\ -0.1315\\ 0.9124 \\ 0.1882 \\ 2.1694 \\ -0.1149 \\ 2.0037 \end{bmatrix} P=Wh+b= 1.01071.82480.99750.85050.13150.91240.18822.16940.11492.0037

接下来是 Softmax 层,计算公式如下公式所示,计算过程如下:
P ′ = S o f t m a x ( P ) = P ∑ k = 1 V exp ⁡ ( P k ) = [ e 1.0107 e 1.8248 e − 0.9975 e 0.8505 e − 0.1315 e 0.9124 e 0.1882 e 2.1694 e − 0.1149 e 2.0037 ] T e 1.0107 + e 1.8248 + e − 0.9975 + e 0.8505 + e − 0.1315 + e 0.9124 + e 0.1882 + e 2.1694 + e − 0.1149 + e 2.0037 = [ 0.0714 0.185 0.0017 0.0536 0.0375 0.0313 0.2076 0.1661 0.0177 0.2276 ] T P' = Softmax(P) = \frac{P}{\sum\limits_{k=1}^{V} \exp(P_k)} = \frac{ \begin{bmatrix} e^{1.0107} & e^{1.8248} & e^{-0.9975}& e^{0.8505} & e^{-0.1315} & e^{0.9124}& e^{0.1882} & e^{2.1694}& e^{-0.1149} & e^{2.0037} \end{bmatrix}^T}{e^{1.0107} + e^{1.8248} + e^{-0.9975}+ e^{0.8505} + e^{-0.1315} + e^{0.9124} + e^{0.1882} + e^{2.1694} + e^{-0.1149} + e^{2.0037}} = \begin{bmatrix} 0.0714 & 0.185 & 0.0017 & 0.0536 & 0.0375 & 0.0313 & 0.2076 & 0.1661 & 0.0177 & 0.2276 \end{bmatrix}^T P=Softmax(P)=k=1Vexp(Pk)P=e1.0107+e1.8248+e0.9975+e0.8505+e0.1315+e0.9124+e0.1882+e2.1694+e0.1149+e2.0037[e1.0107e1.8248e0.9975e0.8505e0.1315e0.9124e0.1882e2.1694e0.1149e2.0037]T=[0.07140.1850.00170.05360.03750.03130.20760.16610.01770.2276]T

根据 P ′ P' P,我们了解到概率最大的值为 0.2276 0.2276 0.2276,也就是索引位置在 9 9 9位置的单词,对应的one-hot向量为 [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ] T [0,0,0,0,0,0,0,0,0,1]^T [0,0,0,0,0,0,0,0,0,1]T,也就是单词 “.”(句号)。于是我们输出预测的单词是 “.”(句号)。

下面依据上面模型结构中的例子继续,用来解释损失函数的计算。

损失函数

损失函数是在 CBOW 模型结构中的 CrossEntropyError 模块中,意为计算交叉熵损失。交叉熵损失的计算公式会在下面展示。CrossEntropyError 的输入是 Softmax 层计算得到的概率向量 P ′ P' P,和正确的监督标签 T T T ,其中 P ′ = ( P 1 ′ , P 2 ′ , … , P V ) T P' = (P_1', P_2', \dots, P_V)^T P=(P1,P2,,PV)T,正确的监督标签 T = ( t 1 , t 2 , … , t V ) T T = (t_1, t_2, \dots, t_V)^T T=(t1,t2,,tV)T 就是正确答案单词的 one-hot 向量。

Loss = − ∑ i = 1 V t i log ⁡ ( P i ′ ) \text{Loss} = - \sum_{i = 1}^{V} t_i\log(P_i') Loss=i=1Vtilog(Pi)

这里我们可以直观地进行理解,one-hot 向量在正确的索引位置上才是 1 ,其他位置都是 0 ,那么上面的公式表示提取出正确答案的概率,由于输出是概率,取值值在 [0,1]之间,在使用 log 函数的时候得到值是负的,而且概率越高,log 后的值越大,取负号可以很好的表示损失。

小结

CBOW 模型训练的基本步骤包括:

1.将上下文词进行 one-hot 表征作为模型的输入
X = ( x i − C , x i − C + 1 , … , x i − 1 , x i , … , x i + C − 1 , x i + C ) ∈ R V × 2 C X = (x_{i-C},x_{i-C+1},\dots, x_{i-1}, x_{i}, \dots, x_{i+C-1}, x_{i+C})\in \mathbb{R}^{V \times 2C} X=(xiC,xiC+1,,xi1,xi,,xi+C1,xi+C)RV×2C
其中 i i i为目标单词的位置词 , C C C为上下文单词数量, V V V为汇表的维度;

2.然后将所有上下文词汇的 one-hot 向量分别乘以权重输入层的权重输入矩阵 W ∈ R D × V W \in \mathbb{R}^{D \times V} WRD×V 在加上置偏值 b b b得到加权平均层输入 X ′ ∈ R V × 2 C X' \in \mathbb{R}^{V \times 2C} XRV×2C,即
X ′ = W X + b X' = WX + b X=WX+b

3.将上一步得到的 X ′ X' X,对各个列向量 x i x_i xi相加取平均作为隐藏层向量 h ∈ R D × 1 h \in \mathbb{R}^{D \times 1} hRD×1,即
h = 1 2 C X ′ j ⃗ h = \frac{1}{2C} X'\vec{j} h=2C1Xj
其中 D D D 为隐藏层的维数, j ⃗ = [ 1 , 1 , … , 1 , 1 ] \vec{j}=[1,1,\dots,1,1] j =[1,1,,1,1] 2 C 2C 2C 1 1 1列的向量。

4.随后将隐藏层向量 h h h 乘以隐藏层到输出层的权重 W ′ W' W再加上置偏值 b ′ b' b得到单词得分向量 P ∈ R V × 1 P \in \mathbb{R}^{V \times 1} PRV×1,即
P = W ′ h + b ′ P = W'h + b' P=Wh+b

5.将计算得到的得分向量 P P P通过 Softmax 激活处理得到 V V V 维的概率分布 P ′ ∈ R V × 1 P' \in \mathbb{R}^{V \times 1} PRV×1,即
P ′ = Softmax ( P ) P' = \text{Softmax}(P) P=Softmax(P)

6.通过概率分布取概率最大的索引作为预测的目标词。通过概率分布和one-hot 监督标签用交叉熵损失计算损失。

我们的目标是通过梯度下降让损失函数变小,使模型学习到如何根据上下文的信息推断出最可能的目标词,训练结束得到的 W W W W ′ W' W 作为训练的副产物就是我们的词向量(矩阵)。

附录

预处理的参考程序代码

	def preprocess(text):
		text = text.lower()
		text = text.replace('.', ' .')
		text = text.replace(',', ' ,')
		text = text.replace('!', ' !')
		
		words = text.split(' ')
		
		word_to_id = {}
		id_to_word = {}
		for word in words:
			if word not in word_to_id:
				new_id = len(word_to_id)
				word_to_id[word] = new_id
				id_to_word[new_id] = word
				corpus = np.array([word_to_id[w] for w in words])
		return corpus, word_to_id, id_to_word	

预处理转换为one-hot表示程序代码

	def convert_one_hot(corpus, vocab_size):	
		N = corpus.shape[0]		
		if corpus.ndim == 1:
			one_hot = np.zeros((N, vocab_size), dtype=np.int32)
			for idx, word_id in enumerate(corpus):
			one_hot[idx, word_id] = 1		
		elif corpus.ndim == 2:
			C = corpus.shape[1]
			one_hot = np.zeros((N, C, vocab_size), dtype=np.int32)
			for idx_0, word_ids in enumerate(corpus):
				for idx_1, word_id in enumerate(word_ids):
					one_hot[idx_0, idx_1, word_id] = 1		
		return one_hot

其中 corpus是单词集合,vocab_size 是单词集合的大小也就是 len(corpus)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2201884.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LLM4Rec最新工作: 字节发布用于序列推荐的分层大模型HLLM

前几个月 Meta HSTU 点燃各大厂商对 LLM4Rec 的热情,一时间,探索推荐领域的 Scaling Law、实现推荐的 ChatGPT 时刻、取代传统推荐模型等一系列话题让人兴奋,然而理想有多丰满,现实就有多骨感,尚未有业界公开真正复刻 …

微服务架构---认识Zuul

目录 认识Zuul简单的例子 第一个Zuul程序步骤1:创建父工程zuul-1步骤2:创建HystrixController类步骤3:搭建服务消费者eureka-consumer项目(1)创建一个config包,在config包下新建配置类RestConfig&#xff0…

别再浪费时间!利用ChatGPT写作提效神器,赶紧收藏!

在信息化迅猛发展的当下,写作已成为我们日常中不可或缺的组成部分。论是在撰写报告、进行学术论文创作,还是写博客内容,写作都是我们思想和观点的核心手段。然而,写作非易事,它常需要我们付出大量的时间和精力。那么&a…

Superset SQL模板使用

使用背景 有时想让表的时间索引生效,而不是在最外层配置报表时,再套多一层时间范围。这时可以使用SQL模板 参考官方文档 https://superset.apache.org/docs/configuration/sql-templating/#:~:textSQL%20Lab%20and%20Explore%20supports%20Jinja 我…

vscode中的Code Runner配置----output中文乱码(设置默认使用cmd运行文件)、设置当前文件夹为根路径

问题描述 1. 存在中文显示异常,以及输出用Output输出的问题 解决方法: 把终端改为 cmd。如果是就不用替换了 修改RunCode的配置 完成,下面点击 run code就在cmd中运行了 2. 设置当前文件夹为根路径 code runner 的默认根路径是当前项目…

C#中Assembly3个获取路径的方法

在C#中,经常要获取路径 ,可以通过Assembly的三个重载方法来获取,如下所示这三个分别是GetCallingAssembly、GetEntryAssembly和GetExecutingAssembly。 string tmpEntryPath Assembly.GetEntryAssembly().Location;string tmpExeasmPath As…

嵌入式面试——C语言和数据结构篇(二)

本篇为C语言和数据结构篇(二) 1、关键字static的作用是什么? 答: 在C语言中,关键字static有三个明显的作用: 1>在函数体,一个被声明为静态的变量在这一函数被调用过程中维持其值不变。 2&…

深度解读数字化转型的核心驱动因素与实践指南从战略到落地

数字化转型的战略重心 在当今商业环境中,数字化转型不仅是企业提升效率的工具,更是创造竞争优势的必要条件。随着技术的飞速发展,企业在面对市场动态变化时,依赖于其数字化基础设施、数据处理能力以及对新技术的敏捷反应能力&…

嵌入式面试——FreeRTOS篇(六) 任务通知

本篇为:FreeRTOS 任务通知篇 任务通知简介 1、任务通知介绍 答: 任务通知:用来通知任务的,任务控制块中的结构体成员变量ulNotifiedValue就是这个通知值。 使用队列、信号量、事件标志组时都需要另外创建一个结构体&#xff0c…

【JAVA开源】基于Vue和SpringBoot的高校学科竞赛平台

本文项目编号 T 075 ,文末自助获取源码 \color{red}{T075,文末自助获取源码} T075,文末自助获取源码 目录 一、系统介绍二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究现状5.3 可行性分析 六、核心代码6.1 教…

如何使用DAMODEL进行AI开发教程

DAMODEL:DAMODEL 目前DAmodel注册并实名赠送50大洋的免费额度,搭载4090的服务器费用不到2r/h 教程: 完成注册并实名后 在此点击创建实例 选择实例配置 选择镜像,看你使用哪种dl框架 设置完毕后创建密钥并选择该密钥。 创建…

防火墙的三种工作模式:路由模式、透明模式(网桥)、混合模式

防火墙作为网络安全的核心设备之一,扮演着至关重要的角色。它不仅能够有效防御外部网络的攻击,还能保护内部网络的安全。在如今复杂多样的网络环境下,防火墙的部署和工作模式直接影响着网络安全策略的实施效果。防火墙通常可以工作在三种模式…

论文阅读笔记-Self-Attention

前言 Self-Attention能够将每个元素和当前时刻元素进行比较来确定上下文元素的重要性,这也使得它在NLP模型中表现优异。而本篇文章则是将卷积结构与Self-Attention结构进行了比较,通过 实验证明了这样的卷积结构同样有着高效的计算和足以和Self-Attention媲美的效果。本篇文…

【AAOS】Android Automotive 9模拟器源码下载及编译

源码下载 repo init -u https://android.googlesource.com/platform/manifest -b android-9.0.0_r61 repo sync -c --no-tags --no-clone-bundle 源码编译 source build/envsetup.sh lunch aosp_car_x86_64-userdebug make -j8 运行效果 emulator Home界面 MAP All apps S…

python爬虫 - 数据提取

🌈个人主页:https://blog.csdn.net/2401_86688088?typeblog 🔥 系列专栏:https://blog.csdn.net/2401_86688088/category_12797772.html 目录 前言 一、数据类型及其对应的提取策略 (一)文本数据 &…

网约巴士订票系统小程序的设计

管理员账户功能包括:系统首页,个人中心,管理员管理,用户管理,巴士信息管理,积分兑换管理,积分纪录管理,新闻信息管理,基础数据管理 微信端账号功能包括:系统…

国产长芯微LDC8531低功耗轨到轨输出 16 位串行输入数模转换器完全P2P替代DAC8531

描述 LDC8531是一款低功耗、单16位缓冲电压输出数模转换器(DAC)。其片上精密输出放大器允许实现轨到轨输出摆动。LDC8531使用多功能三线串行接口,其时钟频率高达30MHz,与标准SPI、QSPI、Microwire和数字信号处理器(DSP…

数据库迁移中的权限问题及解决方法——以Error 1142为例

个人名片 🎓作者简介:java领域优质创作者 🌐个人主页:码农阿豪 📞工作室:新空间代码工作室(提供各种软件服务) 💌个人邮箱:[2435024119qq.com] &#x1f4f1…

无线领夹麦克风哪个降噪好?选购领夹麦克风需注意的五大隐藏风险

不知道大家有没有遇到这样一个情况,为什么有些视频或直播的声音听起来那么清晰,仿佛身临其境,而自己拍的视频却总是嘈杂不堪,尤其是在户外拍摄的时候,音频中更是充斥着各种各样的噪音。这种问题主要还是麦克风的原因所…

3dmax笔记-ALT X 透明度设置

1 降低max的模型的透明度 ALTX 看区别 区别对比