SD入门教程一:Stable Diffusion 基础(技术篇)

news2025/1/11 2:14:19

前言

在开篇的时候就大致讲了SD和VAE,那么今天我们具象化地再来讲讲Stable Diffusion(稳定扩散)。

严格说来它是一个由几个组件(模型)构成的系统,而非单独的一个模型。我以最常见的文生图为例,解释下 Stable Diffusion 的整体架构和工作原理。


!如何工作!


当我们输入一句prompt 后,比如“a dog,standing on the grass,”,Stable Diffusion 会生成一张狗子站在草地的图,看似只有一步:

但实际上,整个生成的过程经过三个大的步骤。我会先概括地介绍这三大步骤分别是什么,先让大家对 Stable Diffusion 有一个整体的理解,然后再细讲里面的细节:

  1. 首先,用户输入的 Prompt 会被一个叫Text Encoder(文本编译器) 的东西编译成一个个的词特征向量。此步骤下会输出 77 个等长的向量,每个向量包含 768 个维度。各位同学可以简单将其理解为「将文本转化为机器能识别的多组数字信息」。

  2. 接着,这些特征向量会和一张随机图(可以简单理解这是一张老式电视机的雪花图,或充满信息噪声的图),一起放到 Image Information Creator 里。在这一步,机器会将这些特征向量和随机图先转化到一个Latent Space(潜空间)里,然后根据这些特征向量,将随机图「降噪」为一个「中间产物」。你可以简单理解,此时的「中间产物」是人类看不懂的「图」,是一堆数字信息,但此时这个中间产物所呈现的信息已经是一只狗站在草地上了。

  3. 最后,这个中间产物会被Image Decoder(图片解码器)解码成一张真正的图片。

所有的AI设计工具,安装包、模型和插件,都已经整理好了,👇获取~在这里插入图片描述

如果将以上的三大步骤可视化的话,会是这样:

总结一下,简单理解,就是用户输入了一段 Prompt 指令,机器会按照这个指令,在一个潜空间里,将一张随机图降噪为一张符合指令的图片。整个过程,与其说 AI 是在「生成」图片,不如称其为「雕刻」更合适。

所有图片都存在了一张充满噪点的图片里,AI 只是把不要的部分去掉了。所以如果你用同样是 Diffusion Model 搭建的 Midjourney 话,你会看到如下的过程,首先是一张模糊甚至黑色的图片,然后图片会一步步变得越来越清晰,这就是我前面所说的「降噪」或者「雕刻」的过程:

你可能好奇,为何前面的解释里,Stable Diffusion 最后是直接出图,而不像 Midjourney 那样?实际上,在第二步中,机器会分多次对图进行「降噪」,只是没有将每一次的结果用 Image Decoder 解码成图片,而是只将最后一次结果解码成照片。所以你使用 Stable Diffusion 的时候才不会像 Midjourney 那样看到生成的过程。


!Image Information Creator!


既然说到降噪,我们就来展开讲讲整个「降噪」的过程。

首先整个降噪的过程会在一个 Latent Space(潜空间)里进行,然后会进行多 Steps(步)的降噪,你可以对这个 Steps 进行调整,一般越多图片质量也会好,但时间也会越久。当然这个也跟模型有关,Stable Diffusion XL Turbo 就能 1 步出图,耗时不到 1 秒,而且生成的图片质量还很不错。如果我们将这一步过程可视化,类似是这样的(为了更好地解释,我将下方黑色的块都描述成图,本质上它不是图,只是一堆与图像相关的数据),那 Denoise 里又发生了什么呢?下图是第一个 Denoise 过程的可视化:

上图看上去很复杂,但不要恐惧,我们只要懂加减乘除就能理解这张图:

  • 首先,在 Denoise 里有一个 Noise Predictor(噪音预测器),顾名思义,它就是能预测出随机图里包含什么噪音的模型。除了输入随机图和 Prompt 的词特征向量外,还需要输入当前的 Step 数。虽然在上面的可视化流程中,你会看到很多个 Denoise,但实际程序运行的是同一个 Denoise,所以需要将 Step 告知 Noise Predictor 让其知道正在进行哪一步的预测。

  • 然后,我们先来看橙色的线,Noise Predictor 会使用随机图(比如一张4 X 4的图)和 Prompt 的词特征向量预测出一张噪声图 B。注意,这里不是根据预测输出实际的图,而是一张噪声图。换句话来说,Noise Predictor 是根据词向量预测这张随机图里有哪些不需要的噪声。如果拿前面的雕刻的例子来类比,它输出的是雕刻雕像所不需要的废料。与此同时,Noise Predictor 还会不使用 Prompt 的词特征向量预测出一张噪音图 C(也就是图中的蓝色线)。

  • 接着,Denoise 会拿噪音图 B 和 C 相减得出图 D。我们用简单的数学解释下这张图是啥。首先,图 B 是用 Prompt 加随机图预测的噪声,简单理解,就包含了「根据 Prompt 预测的噪声」+「根据随机图预测的噪声」,而 C 则是「根据随机图预测的噪声」,B 减 C 就等于「根据 Prompt 预测的噪声」。

  • 再之后,Denoise 会将 C 噪声放大,一般就是会乘以一个系数,这个系数在一些 Stable Diffusion 里会以CFG、CFG Scale 或者 Guidance Scale表示。接着再那这张放大后的图与噪声图 C 相加,得到图 E。这样做的原因是为了提高图片生成的准确性,所以通过乘以一个系数,来刻意提高「根据 Prompt 预测的噪声」的权重。如果没有这一步,生成的图片就跟 Prompt 没那么相关了。这个方法也被称为 Classifier Free Guidance(无分类引导法)。

  • 最后,Denoise 会将图 A 减去图 E,得出一张新的图。也就是我前面提到的「雕刻」的过程,去掉不需要的噪声。

如果你有用过 Stable Diffusion 的工具,你会发现 Prompt 的输入框有两个,一个是正向的,一个负向的。那负向的 Prompt 是如何生效的呢?用上述的数学方法,简单理解,当输入负向的 Prompt 的时候,也会生成一张噪声图 B2,但此时我们会用正向的 Prompt 生成的噪声图 B1 减去 B2 再减去 C 得出 D,那就意味着最终生成的图片会更加远离 B2,因为减掉了更多与 B2 相关的噪声。


!Image Decoder!


接着我们再来聊下 Latent Space(潜空间)。我在学习这个概念的时候,最大的疑惑就是为何要在潜空间里进行?而不是直接用图片进行去噪?

要解答这个问题,首先要理解什么是潜空间?

Latent Space(潜空间):潜在空间是指在机器学习和深度学习中,用于表示数据的低维空间。它是通过对原始数据进行编码和降维得到的一组潜在变量。潜在空间的维度通常比原始数据的维度低,因此可以提取出数据中最重要的特征和结构。

看上去很复杂,简单理解就是潜空间会将图片编码成一堆数字,同时对这些数字进行压缩。让我们通过可视化的方式看看这个过程:

图片会先被一个 Image Encoder 编码成一组数据,并被压缩,如果用像素的角度来衡量这个数据压缩的效果,原图可能是一张 512 X 512 的图,压缩后变成了 64 X 64,数据极大地减少了,最后再使用 Image Decoder 还原即可。而这个 Encoder 加 Decoder 的组件,也被称为 Variational Auto Encoder(变分自编码器)简称 VAE 。所以这个 Image Decoder 在一些产品里,也叫 VAE Decoder。

那使用这个技术有什么好处和坏处呢?

**好处:**首先当然是效率提升了非常多。使用 VAE 后,即使消费级显卡 GPU 也能以相对较快的速度,完成降噪运算。同时训练模型的时间也会更短。另外,潜在空间的维度通常比原始图像的维度低得多,这意味着它可以更有效地表示图像的特征。通过在潜在空间中进行操作和插值,可以对图像进行更精细的控制和编辑。这使得在生成图像时可以更好地控制图像的细节和风格,从而提高生成图像的质量和逼真度。

**坏处:**经过编码,然后再将数据还原会导致一些数据丢失。而且加上潜在空间的维度较低,它可能无法完全捕捉原始数据中的所有细节和特征。最终导致还原的图片比较奇怪。

为何 Stable Diffusion 生成的图片中,文字一般都很诡异?因为在这个过程中,一方面是文字的一些细节特征丢失了。另一方面,在预测噪音的时候,文字的预测与图像的预测相比,不那么连贯。举个例子,预测狗的特征是相对简单的,因为狗大概率有 2 个眼睛,眼睛下面是鼻子,它是连贯的。


!Text Encoder!


在最前面的流程中,我提到过,Text Encoder(文本编译器)会将你输入的 Prompt 编译成一个个的词特征向量。此步骤下会输出 77 个等长的向量,每个向量包含 768 个维度。这些向量里到底有什么用呢?

另外,还有一个更有趣的问题,当我们在 Prompt 里只输入 Dog,并没有在 Prompt 里加上狗的品种,那为何最后输出的狗是“约克夏”呢?要回答这些问题,我们需要先理解 Text Encoder 的实现。

目前 Stable Diffusion 常用的 Text Encoder 用的是 OpenAI 开源(opens in a new tab)的 CLIP 模型,全称为 Contrastive Language Image Pre-training(对比语言图像预训练)。我们照例先画个图:

首先,这个 CLIP 也有一个 Text Encoder,会将文本转化为一个特征向量,然后它还有一个 Image Encoder 会将图片也转成各种特征向量。如果这两个向量越近,意味着这个描述,越接近图片的内容;反之越远,则越不相关。

OpenAI 使用了 4 亿组图片文本对,对此模型进行了训练,最后训练出来的 CLIP 模型效果如下图所示。当我们输入图片的描述时,CLIP 能判断出与这个描述最相近的图片是哪张。比如下图中第四行,描述是「一张约克夏狗的照片」,它与纵向第四张图最相关,相似度达到 0.31,与第一张书本的截图相似度只有 0.12。

我们回到 Stable Diffusion,在 Stable Diffusion 里,我们只使用了 CLIP 的 Text Encoder 的部分,因为它能将文本转化成对应文本的特征向量,并且这些特征向量与现实存在的图片会有相关性。

为何当我们输入 Dog 的时候,生成的图大概率是一只约克夏?因为 Text Encoder 将 Dog转化成 77 个等长的向量 Embedding 里会包含与 Dog 相关的一些特征和含义:

  • 形态特征:向量表示可能会捕捉到 Dog 的形态特征,比如它的体型、头部的形状、四肢的位置等。这些特征可以帮助区分 Dog 与其他动物或物体。

  • 视觉特征:向量表示可能会包含 Dog 的视觉特征,比如它的颜色、毛发、眼睛的形状等。这些特征可以帮助识别 Dog 的外观特点。

  • 语义含义:向量表示可能会包含与 Dog 相关的语义含义,比如它是一种宠物、一种独立的动物、与人类有亲密关系等。这些含义可以帮助理解 Dog 在人类文化和社会中的角色和意义。

注意:因为模型有些地方具有不可解释性,所以实际上这些向量不一定包含这些特征,主要是为了更好地解释,所以我举了几个比较具象的例子。

最后,因为在 Stable Diffusion 里,只用到了 CLIP 的 Text Encoder 的部分,所以在一些产品里,这个又称为 CLIP Text Encoder,或者 CLIP Text Encode。

为何使用 Stable Diffusion 或者 Midjourney 时,输入的 Prompt 不需要在意语法?以及大小写不明感呢?因为这些 Prompt 都会被 Text Encoder 转成特征向量,语法、大小写被转成特征向量后,都会是一串数字了,在没有对模型进行调整的情况下,这些都不太敏感了。


这里分享给大家一份Adobe大神整理的《AIGC全家桶学习笔记》,相信大家会对AIGC有着更深入、更系统的理解。

有需要的朋友,可以点击下方免费领取!

在这里插入图片描述

AIGC所有方向的学习路线思维导图

这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。如果下面这个学习路线能帮助大家将AI利用到自身工作上去,那么我的使命也就完成了:
在这里插入图片描述

AIGC工具库

AIGC工具库是一个利用人工智能技术来生成应用程序的代码和内容的工具集合,通过使用AIGC工具库,能更加快速,准确的辅助我们学习AIGC
在这里插入图片描述

有需要的朋友,可以点击下方卡片免费领取!

在这里插入图片描述

精品AIGC学习书籍手册

书籍阅读永不过时,阅读AIGC经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验,结合自身案例融会贯通。

在这里插入图片描述

AI绘画视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,科学有趣才能更方便的学习下去。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2200022.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PCL 计算3DSC并可视化

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 2.1.1 法线计算 2.1.2 3DSC特征计算 2.1.3 可视化3DSC直方图 2.2完整代码 三、实现效果 PCL点云算法汇总及实战案例汇总的目录地址链接: PCL点云算法与项目实战案例汇总&#…

【C++】——继承【上】

P. S.:以下代码均在VS2019环境下测试,不代表所有编译器均可通过。 P. S.:测试代码均未展示头文件stdio.h的声明,使用时请自行添加。 博主主页:Yan. yan.                        …

MPLS解决BGP路由黑洞问题

文章目录 MPLS应用实验实验配置 MPLS应用实验 实验目的:解决BGP中IBGP邻居之间存在的问题 MPLS解决BGP路由黑洞问题实验 配置完基本的MPLS和BGP操作之后,只有R2和R5上面有两个私网的路由,中间的设备没有私网路由,这时候默认还是走…

Linux源码阅读笔记-USB驱动分析

基础层次详解 通用串行总线(USB)主要用于连接主机和外部设备(协调主机和设备之间的通讯),USB 设备不能主动向主机发送数据。USB 总线采用拓扑(树形),主机侧和设备侧的 USB 控制器&a…

IT招聘乱象的全面分析

近年来,IT行业的招聘要求似乎越来越苛刻,甚至有些不切实际。许多企业在招聘时,不仅要求前端工程师具备UI设计能力,还希望后端工程师精通K8S服务器运维,更有甚至希望研发经理掌握所有前后端框架和最新开发技术。这种招聘…

RAG测评关键指标

解读RAG测评:关键指标与应用分析 ©作者|CodeDan 来源|神州问学 一、RAG介绍 1.1 简介 RAG(Retrieval-Augmented Generation)是一种结合信息检索与文本生成的技术,旨在提高大型语言模型(LLM)在回答复…

ROS理论与实践学习笔记——4 ROS的常用组件之TF坐标变换

tf:TransForm Frame,坐标变换 坐标系:ROS 中是通过坐标系统开标定物体的,确切的将是通过右手坐标系来标定的。 作用:在 ROS 中用于实现不同坐标系之间的点或向量的转换。 说明:在ROS中坐标变换最初对应的是tf,不过在 hydro 版本开始, tf 被弃用,迁移到 tf2,后者…

docker 搭建 vue3 + vite

vue3发布了,今天就分享一下我使用docker 搭建 vue3 vite 开发环境。至于为什么使用docker搭建,因为多版本可以快速切换,和本地环境避免冲突。好了话不多说我们开始吧。 1. 准备资料 Docker Desktop wsl2 ubuntu 下载地址 : https://www.docker.…

实验室认证需要准备哪些文件材料?

实验室认证需要准备的文件材料通常包括以下几类: 一、法律地位文件 实验室成立文件及营业执照:包括实验室的成立证明文件、单位营业执照等,以证明实验室的法律地位和合法性。 人员任命文件:最高管理者(如总经理&…

QT 实现QMessageBox::about()信息自定义显示

这是我记录Qt学习过程的第四篇心得文章,主要是方便自己编写的应用程序显示“关于信息”,对QMessageBox::about()输入信息进行规范,可以设置应用程序名称,通过定义宏从pro文件获取应用程序版本号,以及编译程序的QT版本、…

关于C语⾔内存函数 memcpy memmove memset memcmp

memcpy使⽤和模拟实现 void * memcpy ( void * destination, const void * source, size_t num ); 函数memcpy从source的位置开始向后复制num个字节的数据到destination指向的内存位置。 这个函数在遇到 \0 的时候并不会停下来。 如果source和destination有任何的重叠&am…

Linux环境通过APT 仓库安装版PostgreSQL 数据库实战

Linux环境通过APT 仓库安装版PostgreSQL 数据库是运维人员常见的需求之一,今天我们一步一步演示一下: 1、添加 PostgreSQL APT 仓库 确保你的系统更新,然后添加 PostgreSQL 的官方 APT 仓库。 sudo apt update sudo apt install -y wget w…

原来机器学习那么简单——决策树回归

引言: 在正文开始之前,首先给大家介绍一个不错的人工智能学习教程:https://www.captainbed.cn/bbs。其中包含了机器学习、深度学习、强化学习等系列教程,感兴趣的读者可以自行查阅。 一、算法介绍 回归树是决策树的一种&#xff…

[已完结] Authentication Lab —— 靶场笔记合集

Authentication Labhttps://authlab.digi.ninja/ 0x01:Authentication Lab 靶场简介 Authentication Lab 是由 DigiNinja 提供的,一个专注于身份验证和授权漏洞的实验平台。该网站旨在提供一个可以让用户探索和实践各种常见与不常见的身份验证与授权漏…

带你深入浅出设计模式:十、责任链模式:设计模式中的多米诺骨牌效应

此为设计模式第十谈! 用总-分-总的结构和生活化的例子给你讲解设计模式! 码农不易,各位学者学到东西请点赞收藏支持支持! 开始部分: 总:责任链的本质是使多个对象都有机会处理请求,将这些对象…

指针和引用区别

目录 指针 指针类型 野指针 二级指针 Const修饰指针 引用 引用的作用 常引用 引用和指针的对比 引用能够完全替换指针吗? 指针 指针是C语言中的概念,它是指计算机储存内容的地址。指针它的值指向存在电脑储存器中另一个地方的值。通过地址能找…

玩机搞机基本常识-----如何在 Android 中实现默认开启某个功能 修改方法列举

我们有时候需要对安卓系统进行修改。实现其中的某些功能。让用户使用得心应手。节约时间。那么如果要实现系统中的有些功能选项开启或者关闭。就需要对系统有一定的了解。那么在 Android 中实现默认开启某个功能可以通过以下几种方式: 一、在应用的设置中添加选项 …

Chromium 中js Fetch API接口c++代码实现(二)

Chromium 中JavaScript Fetch API接口c代码实现(一)-CSDN博客 接着上一篇继续介绍调用,上函数堆栈。 1、打开http://192.168.8.1/chfs/shared/test/test02.html 此标签进程ID12484, 2、打开vs附加上此进程ID12484 3、点击页面测…

uni-app 开发的应用快速构建成鸿蒙原生应用

uni-app 是一个使用 Vue.js 开发所有前端应用的框架,它支持编译到 iOS、Android、小程序等多个平台。对于 HarmonyOS(鸿蒙系统),uni-app 提供了特定的支持,允许开发者构建鸿蒙原生应用。 一、uni-app 对 HarmonyOS 的支…

分治算法(7)_归并排序_计算右侧小于当前元素的个数

个人主页:C忠实粉丝 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 C忠实粉丝 原创 分治算法(7)_归并排序_计算右侧小于当前元素的个数 收录于专栏【经典算法练习】 本专栏旨在分享学习算法的一点学习笔记,欢迎大家在评论区交流讨论&…