毕设 深度学习图像搜索算法-图像搜索引擎(源码分享)

news2024/11/23 4:32:19

文章目录

  • 0 简介
  • 1 前言
  • 2 图像检索介绍
    • (1) 无监督图像检索
    • (2) 有监督图像检索
  • 3 图像检索步骤
  • 4 应用实例
  • 最后

0 简介

今天学长向大家分享一个毕业设计项目

毕业设计 深度学习图像搜索算法-图像搜索引擎(源码分享)

项目运行效果:

毕业设计 深度学习图像搜索算法-图像搜索引擎

🧿 项目分享:见文末!

1 前言

图像检索:是从一堆图片中找到与待匹配的图像相似的图片,就是以图找图。 网络时代,随着各种社交网络的兴起,网络中图片,视频数据每天都以惊人的速度增长,逐渐形成强大的图像检索数据库。针对这些具有丰富信息的海量图片,如何有效地从巨大的图像数据库中检索出用户需要的图片,成为信息检索领域研究者感兴趣的一个研究方向。

2 图像检索介绍

给定一个包含特定实例(例如特定目标、场景、建筑等)的查询图像,图像检索旨在从数据库图像中找到包含相同实例的图像。但由于不同图像的拍摄视角、光照、或遮挡情况不同,如何设计出能应对这些类内差异的有效且高效的图像检索算法仍是一项研究难题。

在这里插入图片描述

图像检索的典型流程 首先,设法从图像中提取一个合适的图像的表示向量。其次,对这些表示向量用欧式距离或余弦距离进行最近邻搜索以找到相似的图像。最后,可以使用一些后处理技术对检索结果进行微调。可以看出,决定一个图像检索算法性能的关键在于提取的图像表示的好坏。

(1) 无监督图像检索

无监督图像检索旨在不借助其他监督信息,只利用ImageNet预训练模型作为固定的特征提取器来提取图像表示。

直觉思路 由于深度全连接特征提供了对图像内容高层级的描述,且是“天然”的向量形式,一个直觉的思路是直接提取深度全连接特征作为图像的表示向量。但是,由于全连接特征旨在进行图像分类,缺乏对图像细节的描述,该思路的检索准确率一般。

利用深度卷积特征 由于深度卷积特征具有更好的细节信息,并且可以处理任意大小的图像输入,目前的主流方法是提取深度卷积特征,并通过加权全局求和汇合(sum-pooling)得到图像的表示向量。其中,权重体现了不同位置特征的重要性,可以有空间方向权重和通道方向权重两种形式。

CroW 深度卷积特征是一个分布式的表示。虽然一个神经元的响应值对判断对应区域是否包含目标用处不大,但如果多个神经元同时有很大的响应值,那么该区域很有可能包含该目标。因此,CroW把特征图沿通道方向相加,得到一张二维聚合图,并将其归一化并根号规范化的结果作为空间权重。CroW的通道权重根据特征图的稀疏性定义,其类似于自然语言处理中TF-IDF特征中的IDF特征,用于提升不常出现但具有判别能力的特征。

Class weighted features 该方法试图结合网络的类别预测信息来使空间权重更具判别能力。具体来说,其利用CAM来获取预训练网络中对应各类别的最具代表性区域的语义信息,进而将归一化的CAM结果作为空间权重。

PWA PWA发现,深度卷积特征的不同通道对应于目标不同部位的响应。因此,PWA选取一系列有判别能力的特征图,将其归一化之后的结果作为空间权重进行汇合,并将其结果级联起来作为最终图像表示。

在这里插入图片描述

(2) 有监督图像检索

在这里插入图片描述

有监督图像检索首先将ImageNet预训练模型在一个额外的训练数据集上进行微调,之后再从这个微调过的模型中提取图像表示。为了取得更好的效果,用于微调的训练数据集通常和要用于检索的数据集比较相似。此外,可以用候选区域网络提取图像中可能包含目标的前景区域。

孪生网络(siamese network) 和人脸识别的思路类似,使用二元或三元(+±)输入,训练模型使相似样本之间的距离尽可能小,而不相似样本之间的距离尽可能大。

3 图像检索步骤

图像检索技术主要包含几个步骤,分别为:

  • 输入图片

  • 特征提取

  • 度量学习

  • 重排序

  • 特征提取:即将图片数据进行降维,提取数据的判别性信息,一般将一张图片降维为一个向量;

  • 度量学习:一般利用度量函数,计算图片特征之间的距离,作为loss,训练特征提取网络,使得相似图片提取的特征相似,不同类的图片提取的特征差异性较大。

  • 重排序:利用数据间的流形关系,对度量结果进行重新排序,从而得到更好的检索结果。

在这里插入图片描述

4 应用实例

学长在这做了个图像检索器的demo,效果如下

工程代码:
在这里插入图片描述

关键代码:

# _*_ coding=utf-8 _*_
from math import sqrt
import cv2
import time
import os
import numpy as np
from scipy.stats.stats import  pearsonr
#配置项文件
import  pymysql
from config import *
from mysql_config import *
from utils import getColorVec, Bdistance

db = pymysql.connect(DB_addr, DB_user, DB_passwod, DB_name )

def query(filename):
    if filename=="":
        fileToProcess=input("输入子文件夹中图片的文件名")
    else:
        fileToProcess=filename
    #fileToProcess="45.jpg"
    if(not os.path.exists(FOLDER+fileToProcess)):
        raise RuntimeError("文件不存在")
    start_time=time.time()
    img=cv2.imread(FOLDER+fileToProcess)
    colorVec1=getColorVec(img)
    #流式游标处理
    conn = pymysql.connect(host=DB_addr, user=DB_user, passwd=DB_passwod, db=DB_name, port=3306,
                           charset='utf8', cursorclass = pymysql.cursors.SSCursor)
    leastNearRInFive=0

    Rlist=[]
    namelist=[]
    init_str="k"
    for one in range(0, MATCH_ITEM_NUM):
        Rlist.append(0)
        namelist.append(init_str)

    with conn.cursor() as cursor:
        cursor.execute("select name, featureValue from "+TABLE_NAME+" order by name")
        row=cursor.fetchone()
        count=1
        while row is not None:
            if row[0] == fileToProcess:
                row=cursor.fetchone()
                continue
            colorVec2=row[1].split(',')
            colorVec2=list(map(eval, colorVec2))
            R2=pearsonr(colorVec1, colorVec2)
            rela=R2[0]
            #R2=Bdistance(colorVec1, colorVec2)
            #rela=R2
            #忽略正负性
            #if abs(rela)>abs(leastNearRInFive):
            #考虑正负
            if rela>leastNearRInFive:
                index=0
                for one in Rlist:
                    if rela >one:
                        Rlist.insert(index, rela)
                        Rlist.pop(MATCH_ITEM_NUM)
                        namelist.insert(index, row[0])
                        namelist.pop(MATCH_ITEM_NUM)
                        leastNearRInFive=Rlist[MATCH_ITEM_NUM-1]
                        break
                    index+=1
            count+=1
            row=cursor.fetchone()
    end_time=time.time()
    time_cost=end_time-start_time
    print("spend ", time_cost, ' s')
    for one in range(0, MATCH_ITEM_NUM):
        print(namelist[one]+"\t\t"+str(float(Rlist[one])))


if __name__ == '__main__':
    #WriteDb()
    #exit()
    query("")

效果
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
项目运行效果:

毕业设计 深度学习图像搜索算法-图像搜索引擎

最后

🧿 项目分享:见文末!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2196011.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【ESP32】ESP-IDF开发 | Timer硬件定时器+定时器闹钟例程

1. 简介 ESP32内置4个64-bit通用定时器。每个定时器包含一个16-bit预分频器和一个64-bit可自动重新加载向上/向下计数器。ESP32的定时器分为2组,每组2个。定时器具有闹钟功能,闹钟事件会引发重新加载和触发中断。 硬件定时器的时钟是由APB时钟提供的&…

sqli-labs靶场第三关less-3

sqli-labs靶场第三关less-3 1、确定注入点 http://192.168.128.3/sq/Less-3/?id1 http://192.168.128.3/sq/Less-3/?id2 有不同回显,判断可能存在注入, 2、判断注入类型 输入 http://192.168.128.3/sq/Less-3/?id1 and 11 http://192.168.128.3/sq/L…

Linus Torvalds 要求内核开发人员编写更好的 Git 合并提交信息

昨天在宣布 Linux 6.12-rc2 内核时,Linus Torvalds 要求内核维护者在提交信息方面做得更好。Torvalds 尤其希望内核维护者在描述拉取请求中的变更时,能更好地使用积极、命令式的语气。 Linux创建者在6.12-rc2 公告中解释道: 总之&#xff0c…

Arduino UNO R3自学笔记21 之 Arduino基础篇学习总结

注意:学习和写作过程中,部分资料搜集于互联网,如有侵权请联系删除。 前言:目前将Arduino的大多数基础内容学习了,做个总结。 1.编程语言 学习单片机,在面向单片机编程时,语言是最基础的&#…

Docker exec bash -c 使用详解与 Python 封装示例

简介:docker exec 是 Docker 的一个实用命令,允许在正在运行的容器中执行命令。通过 bash -c 选项,可以执行复杂的命令串。 历史攻略: go:远程执行系统命令 Python:subprocess模块 Python-subprocess激…

代数结构基础 - 离散数学系列(八)

目录 1. 群(Group) 群的定义 群的示例 2. 环(Ring) 环的定义 环的示例 3. 域(Field) 域的定义 域的示例 域在密码学中的应用 4. 实际应用场景 1. 对称性与加密 2. 误差检测与纠正 3. 数据编码…

Maven介绍和使用

Maven是apache旗下的一个开源项目,是一款用于管理和构建Java项目的工具,它基于项目对象模型(POM)的概念,通过一小段描述信息来管理项目的构建。 依赖管理:方便快捷的管理项目依赖的资源包,避免…

消峰限流有哪几种方式?

消峰限流的方式 业务视角 验证码回答问题环节 技术视角 消息队列异步化用户请求 限流,对流量进行层层过滤 nginx 层限流, 一是控制速率 limit_req 漏桶算法 limit_req_zone $binary_remote_addr zonemylimit:10m rate2r/s; server { location / { lim…

Java面试题——第八篇(JVM)

1. JVM中有哪些垃圾回收算法 Java中的垃圾回收算法有以下几种 1. 标记-清除算法 工作原理:首先遍历堆中的对象,标记出所有存活的对象,接着清除未标记的对象。优点:实现简单,能够处理堆中的所有对象缺点:…

vue3 antd-design-vue3 日期组件语言不显示中文问题

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、修改步骤 前言 随着ant-design-vue v3的推出,ant-design-vue官方把时间组件中的momentjs 替换成了dayjs,升级完后发现日期显示不正…

swift使用internvl2微调ocr文字检测(目标检测)

详细记录swfit微调interVL2-8B多模态大模型进行目标检测(附代码)-CSDN博客文章浏览阅读2k次,点赞45次,收藏14次。目标检测任务已经不是一个新鲜事了,但是多模态大模型作目标检测任务并不多见,本文详细记录swfit微调interVL2-8B多模态大模型进行目标检测的过程,旨在让更多…

Linux驱动开发(速记版)--单总线

第124章 单总线简介 124.1 单总线概述 单总线是一种串行通信协议,由Dallas Semiconductor开发,特点是用一根信号线实现双向数据传输和时钟同步,节省IO口且结构简单。 它广泛应用于传感器、存储器等。 硬件包括信号线、上拉电阻、设备和处理器…

代码随想录--字符串--重复的子字符串

题目 给定一个非空的字符串,判断它是否可以由它的一个子串重复多次构成。给定的字符串只含有小写英文字母,并且长度不超过10000。 示例 1: 输入: "abab" 输出: True 解释: 可由子字符串 "ab" 重复两次构成。示例 2: 输入: "…

javaweb - 请求响应代码实现

简单参数 原始方式 在原始的web程序中,获取请求参数,需要通过HttpServletRequest对象手动获取。 RequestMapping("/simpleParam")public String simpleParam(HttpServletRequest request) {String name request.getParameter("name&…

基于Springboot+Vue的养老院管理系统的设计与实现 (含源码数据库)

1.开发环境 开发系统:Windows10/11 架构模式:MVC/前后端分离 JDK版本: Java JDK1.8 开发工具:IDEA 数据库版本: mysql5.7或8.0 数据库可视化工具: navicat 服务器: SpringBoot自带 apache tomcat 主要技术: Java,Springboot,mybatis,mysql,vue 2.视频演示地址 3.功能 这个系…

TMC2209堵转检测配置详细教程

按如下图将TMC2209和串口模块连接: 配置流程: 寄存器配置: 通用寄存器: 校验码见我之前文章:使用uart串口配置TMC2209模块_tmc2209 uart-CSDN博客 通用寄存器主要是配置第0和第1位,第1位要给1&#xff0…

python之详解列表

有序的可变容器,可以存储不同类型的元素。用中括号[]表示。 1、列表的查找访问 1.1、通过下标查找。 与字符串类似,列表也可通过 列表名[index] 的方式查找其中的元素。 索引的初始值为0,最大值为列表长度-1。 示例: list1 …

刷题 位运算 / 数学

面试经典 150 题 - 位运算 ⭐️⭐️67. 二进制求和 加法进位 class Solution { public:string addBinary(string a, string b) {int na a.size(), nb b.size();string ans;ans.reserve(max(na, nb) 1); // 预留空间,避免动态扩展时的性能损耗int carry 0;for …

platform bus平台总线详解

往期内容 驱动中的device和device_driver结构体-CSDN博客bus总线的相关结构体和注册逻辑-CSDN博客bus中设备驱动的probe触发逻辑和device、driver的添加逻辑-CSDN博客 前言 注:以下的代码皆摘自于linux 4.9.88版本的内核源码,不同版本可能有所出入。 之…

【EXCEL数据处理】保姆级教程 000016案例 EXCEL的vlookup函数。

【EXCEL数据处理】000016案例 vlookup函数。 前言:哈喽,大家好,今天给大家分享一篇文章!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏关注哦 💕 目录 【EXCEL数据处理】保姆级教…