北交大研究突破:塑料光纤赋能低成本无摄像头AR/VR眼动追踪技术

news2024/11/28 14:53:18

北交大研究:探索无摄像头低成本AR/VR眼动追踪新路径

图片

在AR/VR技术领域,眼动追踪作为一项关键技术,对于提升用户体验、优化渲染效率具有重要意义。然而,传统的眼动追踪方案多依赖于高成本的摄像头,这不仅增加了设备的制造成本,还带来了能耗上的挑战。针对这一问题,北京交通大学的研究团队正积极探索一种无需摄像头的低成本解决方案,为眼动追踪技术的发展开辟了新思路。

该研究团队的创新点在于利用了塑料光纤这一材料。塑料光纤以其大直径、高数值孔径的显著优势,展现出卓越的光学传输性能,同时加工成本低廉、工艺简便。研究团队通过巧妙设计,将塑料光纤作为光传输的“高速公路”,实现了眼睛反射光的高效传输。他们将光纤的两个扇形表面以45度角相对于垂直方向进行加工,这一创新设计赋予了光纤从侧面高效耦合光线的能力,使得眼睛反射出的光线能够顺利沿着塑料光纤传输至设备外部进行处理。

在实验验证中,研究团队采用了SE-Resnet18深度学习模型对来自76个不同注视方向的散斑图进行了精准分类,分类准确率高达96.9%。这一成果不仅证明了塑料光纤在眼动追踪领域的巨大潜力,也预示着一种低成本、高效率、结构简洁的新型注视追踪系统的诞生。

该解决方案的问世,对于AR/VR设备而言意义重大。它不仅降低了眼动追踪系统的成本,减轻了设备的能耗负担,还提升了系统的响应速度和精度。未来,随着技术的不断成熟与推广,这一创新方案有望在增强现实眼镜、人机交互等多个领域展现广阔的应用前景,成为推动相关行业创新与发展的重要力量。北交大研究团队的这一突破性进展,无疑为眼动追踪技术的发展注入了新的活力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2192273.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

学习资料库系统小程序的设计

管理员账户功能包括:系统首页,个人中心,管理员管理,观看记录管理,基础数据管理,论坛信息管理,公告信息管理,轮播图信息 微信端账号功能包括:系统首页,阅读资…

性能学习5:性能测试的流程

一.需求分析 二.性能测试计划 1)测什么? - 项目背景 - 测试目的 - 测试范围 - ... 2)谁来测试 - 时间进度与分工 - 交付清单 - ... 3)怎么测 - 测试策略 - ... 三.性能测试用例 四.性能测试执行 五.性能分析和调优 六…

【cpp/c++ summary 工具】 conan包管理器安装与cmake项目配置

发现有些包cvpkg中没有(比如字典树),conan里有。 安装conan https://conan.io/downloads 配置conan PS C:\Users\multisim> conan config home C:\Users\multisim\.conan2 # Conan 主文件夹的路径,https://docs.conan.io/2/referen…

【梯级水电站调度优化】基于自适应权值优化粒子群算法

课题名称: 基于改进粒子群算法的梯级水电站调度优化 改进方向:自适应权值优化 代码获取方式(付费): 相关资料: 1. 粒子群算法的基本原理 2. 梯级水电站调度优化模型 3. 代码注释 4. 代码讲解视频&am…

Python编程常用的35个经典案例

Python 的简洁和强大使其成为许多开发者的首选语言。本文将介绍35个常用的Python经典代码案例。这些示例覆盖了基础语法、常见任务、以及一些高级功能。 1.列表推导式 这个例子展示了列表推导式,用于生成FizzBuzz序列。 fizz_buzz_list ["FizzBuzz" i…

互联网Java工程师面试题及答案整理(2024年最新版)

前言 作为一个 Java 程序员,你平时总是陷在业务开发里,每天噼里啪啦忙敲着代码,上到系统开发,下到 Bug 修改,你感觉自己无所不能。然而偶尔的一次聚会,你听说和自己一起出道的同学早已经年薪 50 万&#x…

拥抱大模型时代,从入门到精通,科技从业者的转型攻略与AI红利指南

前言 自2022年11月ChatGPT问世以来,大模型在人工智能领域的潜能得到了充分展示,其深远影响引发了研究热潮。在不到一年的时间里,国产大模型如雨后春笋般涌现,2023年成为了大模型时代的元年。对于IT圈的科技从业者来说&#xff0c…

NextViT实战:使用NextViT实现图像分类任务(二)

文章目录 训练部分导入项目使用的库设置随机因子设置全局参数图像预处理与增强读取数据设置Loss设置模型设置优化器和学习率调整策略设置混合精度,DP多卡,EMA定义训练和验证函数训练函数验证函数调用训练和验证方法 运行以及结果查看测试完整的代码 在上…

从零开始讲PCIe(8)——PCIe拓扑与组件

一、拓扑结构 和PCI-X一样,PCIe链路是点对点的连接,而不是像传统PCI那样使用共享总线。这是由于其使用了非常高的传输速度。因此,链路只能连接两个接口,为了构建一个复杂的系统,必须采用某种方式来扩展连接。在PCIe中&…

《Linux从小白到高手》理论篇:一文概览常用Linux重要配置文件

List item 今天继续宅家,闲来无事接着写。本篇是《Linux从小白到高手》理论篇的最后一篇了。本篇集中介绍所有常用的Linux重要配置文件。 用这个命令可以查看配置文件所在的位置:如上图 locate "*.conf" "*.ini" "*.cfg&quo…

论文 | Model-tuning Via Prompts Makes NLP Models Adversarially Robust

这篇论文研究了使用提示 (Prompting) 方法微调预训练语言模型,以提高其在对抗样本攻击下的鲁棒性。论文的主要贡献如下: 1.MVP 比 MLP-FT 更鲁棒: 论文比较了 MVP (Model-tuning Via Prompts) 和传统的 MLP-FT (Fine-tuning with an MLP head…

热门:AI变现,看看谁在默默赚大钱?

在这个愈发依赖AI的时代,找到属于自己的盈利方式愈发重要。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 总的来说,利用AI进行盈利的方式主要有三种:技术型、流量型和内容型。 每种方式都根植于AI的特性,但同时也需要特定…

【英语】2. 英语的表达习惯

文章目录 前言less v. more n.解释e.g. less v. more prep.被动与中文的歧义总结参考文献 前言 进行英语前后缀的复习 less v. more n. 解释 外国的表达方式:更多地偏向静态,因此更多地使用名词 e.g. (rather Chinglish expression) She could not c…

Linux Cent7 已安装MySQL5.7.X,再安装MYSQL8.4.2

一、 下载安装 检查Linux系统的glibc版本rpm -qa | grep glibc结果:glibc-common-2.17-260.el7_6.6.x86_64 glibc-2.17-260.el7_6.6.x86_64 glibc-headers-2.17-260.el7_6.6.x86_64 glibc-devel-2.17-260.el7_6.6.x86_64访问MySQL官网,下载对应版本数据…

【智能算法应用】侏儒猫鼬优化算法求解二维路径规划问题

摘要 在复杂环境下的移动机器人路径规划问题中,最优路径的求解具有重要的应用价值。本文基于一种新型智能优化算法——侏儒猫鼬优化算法(DMOA),提出了一种二维路径规划的有效求解方法。该算法通过模拟侏儒猫鼬的觅食、社会合作与…

一行 Python 代码能实现什么丧心病狂的功能?圣诞树源代码

手头有 109 张头部 CT 的断层扫描图片,我打算用这些图片尝试头部的三维重建。基础工作之一,就是要把这些图片数据读出来,组织成一个三维的数据结构(实际上是四维的,因为每个像素有 RGBA 四个通道)。 这个…

Github优质项目推荐-第四期

文章目录 Github优质项目推荐 - 第四期一、【Umi-OCR】,26.1k stars - 文字识别工具二、【AFFiNE】,41k stars - 知识库平台三、【NocoBase】,12k stars - 无代码/低代码平台四、【neovim】,82.3k stars - 改良版VIM五、【generat…

LLM大模型:开源RAG框架汇总

前言 本文搜集了一些开源的基于LLM的RAG(Retrieval-Augmented Generation)框架,旨在吸纳业界最新的RAG应用方法与思路。如有错误或者意见可以提出,同时也欢迎大家把自己常用而这里未列出的框架贡献出来,感谢~ RAG应用…

【AI副业项目】AI猫咪带娃新风尚:探索副业新机遇

随着互联网技术的飞速发展,内容创作已成为许多人追求自我表达、实现职业转型或发展副业的重要途径。然而,在信息爆炸的时代,如何创作出既新颖又吸引眼球的内容,成为了摆在每位创作者面前的难题。 在当今这个数字化与智能化并行的…

TM1618控制共阳极数码管的数据传送问题

数据传送中的问题 首先每个字节是按照一个地址写入的,而共阳极数码管的公共端是SEG引脚连接的。这使得数码管显示的编码是按照竖向的字节。如下图所示中,横向是公共端,竖向是实际编码字符字节。 数据转换方式 这样可以一次写入所有需要显示…