【在Linux世界中追寻伟大的One Piece】进程信号

news2024/10/6 0:14:00

目录

1 -> 信号入门

1.1 -> 生活角度的信号

1.2 -> 技术应用角度的信号

1.3 -> 注意

2 -> 信号的概念

2.1 -> 用kill -l命令可以查看系统定义的信号列表

2.2 -> 信号处理常见方式

3 -> 产生信号

3.1 -> Core Dump

3.2 -> 调用系统函数向进程发信号

3.3 -> 由软件条件产生信号

3.4 -> 硬件异常产生信号


1 -> 信号入门

1.1 -> 生活角度的信号

  • 你在网上买了很多件商品,再等待不同商品快递的到来。但即便快递没有到来,你也知道快递来临时,你该怎么处理快递。也就是你能“识别快递”。
  • 当快递员到了你楼下,你也收到快递到来的通知,但是你正在打游戏,需5min之后才能去取快递。那么在在这5min之内,你并没有下去去取快递,但是你是知道有快递到来了。也就是取快递的行为并不是一定要立即执行,可以理解成“在合适的时候去取”。
  • 在收到通知,再到你拿到快递期间,是有一个时间窗口的,在这段时间,你并没有拿到快递,但是你知道有一个快递已经来了。本质上是你“记住了有一个快递要去取”。
  • 当你时间合适,顺利拿到快递之后,就要开始处理快递了。而处理快递一般方式有三种:
    • 执行默认动作(幸福的打开快递,使用商品)。
    • 执行自定义动作(快递是零食,你要送给你的女朋友)。
    • 忽略快递(快递拿上来之后,扔掉床头,继续开一把游戏)。
  • 快递到来的整个过程,对你来讲是异步的,你不能准确断定快递员什么时候给你打电话。

1.2 -> 技术应用角度的信号

1. 用户输入命令,在Shell下启动一个前台进程。

  • 用户按下Ctrl-C,这个键盘输入产生一个硬件中断,被OS获取,解释成信号,发送给目标前台进程。
  • 前台进程因为收到信号,进而引起进程退出。
[hg@localhost code_test]$ cat sig.c
#include <stdio.h>
int main()
{
while(1){
printf("I am a process, I am waiting signal!\n");
sleep(1);
}
}
[hg@localhost code_test]$ ./sig
I am a process, I am waiting signal!
I am a process, I am waiting signal!
I am a process, I am waiting signal!
^C
[hg@localhost code_test]$
  • 进程就是你,操作系统就是快递员,信号就是快递。

1.3 -> 注意

  • Ctrl-C产生的信号只能发给前台进程。一个命令后面加个&可以放到后台运行,这样Shell不必等待进程结束就可以接受新的命令,启动新的进程。
  • Shell可以同时运行一个前台进程和任意多个后台进程,只有前台进程才能接到像Ctrl-C这种控制键产生的信号。
  • 前台进程在运行过程中用户随时可能按下Ctrl-C而产生一个信号,也就是说该进程的用户空间代码执行到任何地方都有可能收到SIGINT信号而终止,所以信号相对于进程的控制流程来说是异步(Asynchronous)的。

2 -> 信号的概念

信号是用来传递信息的物理量,它可以是电信号、声波、光信号等多种形式。在通信和控制系统中,信号作为信息的载体,通过特定的媒介从发送端传输到接收端。信号可以携带声音、图像、数据等多种类型的信息。

信号是进程之间事件异步通知的一种方式,属于软中断。

2.1 -> 用kill -l命令可以查看系统定义的信号列表

  • 每个信号都有一个编号和一个宏定义名称,这些宏定义可以在signal.h中找到,例如其中有定义 #define SIGINT 2。
  • 编号34以上的是实时信号,只讨论编号34以下的信号,不讨论实时信号。这些信号各自在什么条件下产生,默认的处理动作是什么,在signal(7)中都有详细说明: man 7 signal。

2.2 -> 信号处理常见方式

可选的处理动作有以下三种:

  1. 忽略此信号。
  2. 执行该信号的默认处理动作。
  3. 提供一个信号处理函数,要求内核在处理该信号时切换到用户态执行这个处理函数,这种方式称为捕捉(Catch)一个信号。

3 -> 产生信号

SIGINT的默认处理动作是终止进程,SIGQUIT的默认处理动作是终止进程并且Core Dump。

3.1 -> Core Dump

首先解释什么是Core Dump。当一个进程要异常终止时,可以选择把进程的用户空间内存数据全部保存到磁盘上,文件名通常是core,这叫做Core Dump。进程异常终止通常是因为有Bug,比如非法内存访问导致段错误,事后可以用调试器检查core文件以查清错误原因,这叫做Post-mortem Debug(事后调试)。一个进程允许产生多大的core文件取决于进程的Resource Limit(这个信息保存 在PCB中)。默认是不允许产生core文件的,因为core文件中可能包含用户密码等敏感信息,不安全。在开发调试阶段可以用ulimit命令改变这个限制,允许产生core文件。 首先用ulimit命令改变Shell进程的Resource Limit,允许core文件最大为1024K: $ ulimit -c1024。

然后写一个死循环程序。

前台运行这个程序,然后在终端键入Ctrl-C或Ctrl-\:

ulimit命令改变了Shell进程的Resource Limit,test进程的PCB由Shell进程复制而来,所以也具有和Shell进程相同的Resource Limit值,这样就可以产生Core Dump了。

3.2 -> 调用系统函数向进程发信号

首先在后台执行死循环程序,然后用kill命令给它发SIGSEGV信号。

  • 4568是test进程的id。之所以要再次回车才显示Segmentation fault,是因为在4568进程终止掉之前已经回到了Shell提示符等待用户输入下一条命令,Shell不希望Segmentation fault信息和用户的输入交错在一起,所以等用户输入命令之后才显示。
  • 指定发送某种信号的kill命令可以有多种写法,上面的命令还可以写成kill -SIGSEGV 4568或 kill -11 4568, 11是信号SIGSEGV的编号。以往遇 到的段错误都是由非法内存访问产生的,而这个程序本身没错,给它发SIGSEGV也能产生段错误。

kill命令是调用kill函数实现的。kill函数可以给一个指定的进程发送指定的信号。raise函数可以给当前进程发送指定的信号(自己给自己发信号)。

#include <signal.h>
int kill(pid_t pid, int signo);
int raise(int signo);
这两个函数都是成功返回0,错误返回-1。

abort函数使当前进程接收到信号而异常终止。

#include <stdlib.h>
void abort(void);
就像exit函数一样,abort函数总是会成功的,所以没有返回值。

3.3 -> 由软件条件产生信号

SIGPIPE是一种由软件条件产生的信号。

#include <unistd.h>
unsigned int alarm(unsigned int seconds);
调用alarm函数可以设定一个闹钟,也就是告诉内核在seconds秒之后给当前进程发SIGALRM信号,该信号的默认处理动作是终止当前进程。

这个函数的返回值是0或者是以前设定的闹钟时间还余下的秒数。打个比方,某人要小睡一觉,设定闹钟为30分钟之后响,20分钟后被人吵醒了,还想多睡一会儿,于是重新设定闹钟为15分钟之后响,“以前设定的闹钟时间还余下的时间”就是10分钟。如果seconds值为0,表示取消以前设定的闹钟,函数的返回值仍然是以前设定的闹钟时间还余下的秒数。

3.4 -> 硬件异常产生信号

硬件异常被硬件以某种方式被硬件检测到并通知内核,然后内核向当前进程发送适当的信号。例如当前进程执行了除以0的指令,CPU的运算单元会产生异常,内核将这个异常解释为SIGFPE信号发送给进程。再比如当前进程访问了非法内存地址,MMU会产生异常,内核将这个异常解释为SIGSEGV信号发送给进程。


感谢各位大佬支持!!!

互三啦!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2190788.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

已解决-Nacos明明成功运行,但Spring报错连接不上

这天使用windows本地nacos的时候&#xff0c;一直报错&#xff1a; Caused by: com.alibaba.nacos.api.exception.NacosException: Request nacos server failed: Caused by: com.alibaba.nacos.api.exception.NacosException: Client not connected, current status:STARTIN…

(计算机组成原理)

计算机的发展 计算机系统硬件&#xff08;计算机的实体&#xff0c;如主机&#xff0c;外设等&#xff09;软件&#xff08;由具有各种特殊功能的程序组成&#xff09; 硬件是计算机系统的物理基础&#xff0c;硬件决定瓶颈&#xff0c;软件决定性能发挥的程度 第一台电子数字计…

YOLOv4和Darknet实现坑洼检测

关于深度实战社区 我们是一个深度学习领域的独立工作室。团队成员有&#xff1a;中科大硕士、纽约大学硕士、浙江大学硕士、华东理工博士等&#xff0c;曾在腾讯、百度、德勤等担任算法工程师/产品经理。全网20多万粉丝&#xff0c;拥有2篇国家级人工智能发明专利。 社区特色…

IDEA如何自定义创建类的文档注释

说明&#xff1a;在IDEA中&#xff0c;创建一个Java类文件&#xff0c;会在类上面自动生成文档注释&#xff0c;如下&#xff1a; 看样子&#xff0c;默认是计算机的用户名&#xff0c;然后加上当前的创建时间。可以在IDEA中的Setting中设置&#xff0c;如下&#xff1a; /*** …

汽车追尾为什么是后车的责任?

简单点说&#xff1a;因为人后面没有长眼睛。 结论 在汽车追尾事故中&#xff0c;通常情况下后车被认为是责任方的原因在于交通法规对驾驶安全标准的约定和实践中的责任识别原则。虽然追尾事故常见地被归责于后车&#xff0c;但具体判断并不是绝对的&#xff0c;仍需综合多种…

C++11中的特性

这里主要讲解一些C11相较于C98所新增的比较实用的新特性。 C11的官方文档&#xff1a;C11 - cppreference.comhttps://en.cppreference.com/w/cpp/11 一、列表初始化&#xff08;List-initialization&#xff09; &#xff08;一&#xff09;、使用“{}”进行初始化 在C98中&…

有关自连接表的统一封装

表结构 RecursionBean Getter Setter ToString JsonInclude(JsonInclude.Include.NON_EMPTY) public class RecursionBean<T> extends BaseVO {/*** 编号*/private T id;/*** 父权限ID&#xff0c;根节点的父权限为空* 注释掉JsonIgnore&#xff0c;是为了前端判断是否…

Linux驱动开发常用调试方法汇总

引言&#xff1a;在 Linux 驱动开发中&#xff0c;调试是一个至关重要的环节。开发者需要了解多种调试方法&#xff0c;以便能够快速定位和解决问题。 1.利用printk 描述&#xff1a; printk 是 Linux 内核中的一个调试输出函数&#xff0c;类似于用户空间中的 printf。它用于…

CE找CSGO人物坐标和视角基址-幽络源原创

前言 幽络源站长本次免费分享的是CE找CSGO人物坐标和视角基址 本教程分为两篇&#xff0c;当前为上篇->找基址 所具备的知识 CE的使用 教程目的 通过CE找到一些基地址&#xff0c;然后结合Python实现CSGO的透视绘制&#xff0c;这里我们是纯手写透视。 第一步&#x…

如何使用CMD命令启动应用程序(二)

说明&#xff1a;去年1024发布了一篇博客&#xff0c;介绍如何使用CMD命令启动应用程序&#xff0c;但实际情况&#xff0c;有些程序可能无法用配置环境变量的方式来启动&#xff0c;本文针对两种情况下的程序&#xff0c;如何使用CMD命令来启动&#xff0c;算是对上一篇博客的…

Java开发必知必会的一些工具

本文主要介绍 Java 程序员应该学习的一些基本和高级工具。 如果你想成为一名更好的程序员&#xff0c;最重要的技巧之一就是学习你的编程工具。 Java 世界中存在着如此多的工具&#xff0c;从 Eclipse、NetBeans 和 IntelliJ IDEA 等著名的 IDE 到 JConsole、VisualVM、Eclipse…

class 004 选择 冒泡 插入排序

我感觉这个真是没有什么好讲的, 这个是比较简单的, 感觉没有什么必要写一篇博客, 而且这个这么简单的排序问题肯定有人已经有写好的帖子了, 肯定写的比我好, 所以我推荐大家直接去看“左程云”老师的讲解就很好了, 一定是能看懂的, 要是用文字形式再写一遍, 反而有点画蛇添足了…

计算机视觉算法知识详解(含代码示例)

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…

算法: 二分查找题目练习

文章目录 二分查找二分查找在排序数组中查找元素的第一个和最后一个位置搜索插入位置x 的平方根山脉数组的峰顶索引寻找峰值寻找旋转排序数组中的最小值点名 总结精华模版 二分查找 二分查找 没啥可说的,轻轻松松~ class Solution {public int search(int[] nums, int target…

IDEA 配置 Git 详解

本文将介绍在IntelliJ IDEA 中如何配置Git 没有安装配置 Git 的可以参考我的这篇文章&#xff1a;安装配置 Git 一、操作环境及准备 1.win 10 2.已安装且配置了Git 3.有Gitee账户 4.安装了IntelliJ IDEA 2023.2.1 5.全程联网 二、配置步骤 2.1 配置git 1.采用全局设置&…

Pragmatic Task务实任务——指导语义通信的优化

1. 语义通信 语义通信&#xff08;Semantic Communication&#xff09;的核心理念是传递不仅仅是数据本身&#xff0c;而是数据所包含的“语义”或“意义”。这与传统通信系统不同&#xff0c;传统系统只注重如何准确、高效地传输数据&#xff0c;而语义通信则要求传输的信息能…

基于Pcap4j收发自定义协议报文(注意事项/踩坑总结)

大致内容&#xff1a;完善自定义的Cat21协议&#xff0c;补充至少5个数据类型不同的协议字段 用户输入Cat21协议字段&#xff0c;发送数据包 用户捕获Cat21数据包&#xff0c;打印输出字段值 本篇博客是直接将自定义协议报文封装在MAC帧的payload中的。 一、Cat21Packet类 1…

拓扑排序简介

拓扑排序(Topological Sort)是一种重要的图算法,用于对有向无环图(DAG, Directed Acyclic Graph)中的节点进行排序。拓扑排序的结果是一种线性序列,使得对于图中的任意一条有向边(u, v),顶点u都在顶点v之前。这种排序常用于任务调度、编译器依赖关系分析等领域。 拓…

算法题总结(八)——字符串

531、反转字符串二 给定一个字符串 s 和一个整数 k&#xff0c;从字符串开头算起&#xff0c;每计数至 2k 个字符&#xff0c;就反转这 2k 字符中的前 k 个字符。 如果剩余字符少于 k 个&#xff0c;则将剩余字符全部反转。如果剩余字符小于 2k 但大于或等于 k 个&#xff0c…

VTK有向包围盒

文章目录 一、vtkOBBTree1.1 几种树结构的对比1.2 获取线段与数据集的交点1.3 OBB树可视化1.4 对齐两个数据集1.5 圆柱形有向包围盒 本文的主要内容&#xff1a;简单介绍VTK中有向包围盒的相关功能。 主要涉及vtkOBBTree类。 哪些人适合阅读本文&#xff1a;有一定VTK基础的人。…