目录
1.范围for循环
2.智能指针
3.STL中一些变化
4.右值引用和移动语义
4.1 左值引用和右值引用
4.2 左值引用与右值引用比较
4.3 右值引用使用场景和意义
4.4 右值引用引用左值及其一些更深入的使用场景分析
4.5 完美转发
1.范围for循环
int main() { int array[10] = { 1,2,3,4,5,6,7,8,9,10 }; for (auto i : array) { cout << i << " "; } return 0; }
范围for底层其实套用的是迭代器的访问,范围for的语法也很简单auto类型上一篇我已经说过了是编译器自动推导的类型,你当然也可以换成要访问的元素的类型,比如在这里就是int类型。范围for的使用场景我们一般都是在线性容器里使用的多。
2.智能指针
智能指针我会单出一篇来讲它,因为它比较重要,所以我们先不讲它。(我们先讲基础简单的)。
3.STL中一些变化
新容器
用橘色圈起来是C++11中的一些几个新容器,但是实际最有用的是unordered_map和 unordered_set。这两个我们前面已经进行了非常详细的讲解,其他的大家了解一下即可。
容器中的一些新方法
如果我们再细细去看会发现基本每个容器中都增加了一些C++11的方法,但是其实很多都是用得比较少的。
比如提供了cbegin和cend方法返回const迭代器等等,但是实际意义不大,因为begin和end也是可以返回const迭代器的,这些都是属于锦上添花的操作。
实际上C++11更新后,容器中增加的新方法最后用的插入接口函数的右值引用版本:
http://www.cplusplus.com/reference/vector/vector/emplace_back/
http://www.cplusplus.com/reference/vector/vector/push_back/
http://www.cplusplus.com/reference/map/map/insert/
http://www.cplusplus.com/reference/map/map/emplace/
但是这些接口到底意义在哪?网上都说他们能提高效率,他们是如何提高效率的?
请看下面的右值引用和移动语义章节的讲解。另外emplace还涉及模板的可变参数,也需要再继续深入学习后面的知识。
4.右值引用和移动语义
4.1 左值引用和右值引用
传统的C++语法中就有引用的语法,而C++11中新增了的右值引用语法特性,所以从现在开始我们之前学习的引用就叫做左值引用。无论左值引用还是右值引用,都是给对象取别名。
什么是左值?什么是左值引用?
左值是一个表示数据的表达式(如变量名或解引用的指针),我们可以获取它的地址+可以对它赋值,左值可以出现赋值符号的左边,右值不能出现在赋值符号左边。定义时const修饰符后的左值,不能给他赋值,但是可以取它的地址。左值引用就是给左值的引用,给左值取别名。
int main() { // 以下的p、b、c、*p都是左值 int* p = new int(0); int b = 1; const int c = 2; // 以下几个是对上面左值的左值引用 int*& rp = p; int& rb = b; const int& rc = c; int& pvalue = *p; return 0; }
什么是右值?什么是右值引用?
右值也是一个表示数据的表达式,如:字面常量、表达式返回值,函数返回值(这个不能是左值引用返回)等等,右值可以出现在赋值符号的右边,但是不能出现出现在赋值符号的左边,右值不能取地址。右值引用就是对右值的引用,给右值取别名。
int main() { double x = 1.1, y = 2.2; // 以下几个都是常见的右值 10; x + y; fmin(x, y); // 以下几个都是对右值的右值引用 int&& rr1 = 10; double&& rr2 = x + y; double&& rr3 = fmin(x, y); // 这里编译会报错:error C2106: “=”: 左操作数必须为左值 10 = 1; x + y = 1; fmin(x, y) = 1; return 0; }
需要注意的是右值是不能取地址的,但是给右值取别名后,会导致右值被存储到特定位置,且可以取到该位置的地址,也就是说例如:不能取字面量10的地址,但是rr1引用后,可以对rr1取地址,也可以修改rr1。如果不想rr1被修改,可以用const int&& rr1 去引用,是不是感觉很神奇, 这个了解一下实际中右值引用的使用场景并不在于此,这个特性也不重要。
int main() { double x = 1.1, y = 2.2; int&& rr1 = 10; const double&& rr2 = x + y; rr1 = 20; rr2 = 5.5; // 报错 return 0; }
4.2 左值引用与右值引用比较
左值引用总结:
1. 左值引用只能引用左值,不能引用右值。
2. 但是const左值引用既可引用左值,也可引用右值。
int main() { // 左值引用只能引用左值,不能引用右值。 int a = 10; int& ra1 = a; // ra为a的别名 //int& ra2 = 10; // 编译失败,因为10是右值 // const左值引用既可引用左值,也可引用右值。 const int& ra3 = 10; const int& ra4 = a; return 0; }
右值引用总结:
1. 右值引用只能右值,不能引用左值。
2. 但是右值引用可以move以后的左值。
int main() { // 右值引用只能右值,不能引用左值。 int&& r1 = 10; // error C2440: “初始化”: 无法从“int”转换为“int &&” // message : 无法将左值绑定到右值引用 int a = 10; int&& r2 = a;//编译报错 // 右值引用可以引用move以后的左值 int&& r3 = std::move(a); return 0; }
4.3 右值引用使用场景和意义
前面我们可以看到左值引用既可以引用左值和又可以引用右值,那为什么C++11还要提出右值引用呢?是不是化蛇添足呢?下面我们来看看左值引用的短板,右值引用是如何补齐这个短板的!
namespace kuruomi { class string { public: typedef char* iterator; iterator begin() { return _str; } iterator end() { return _str + _size; } string(const char* str = "") :_size(strlen(str)) , _capacity(_size) { //cout << "string(char* str)" << endl; _str = new char[_capacity + 1]; strcpy(_str, str); } // s1.swap(s2) void swap(string& s) { ::swap(_str, s._str); ::swap(_size, s._size); ::swap(_capacity, s._capacity); } // 拷贝构造 string(const string& s) :_str(nullptr) { cout << "string(const string& s) -- 深拷贝" << endl; string tmp(s._str); swap(tmp); } // 赋值重载 string& operator=(const string& s) { cout << "string& operator=(string s) -- 深拷贝" << endl; string tmp(s); swap(tmp); return *this; } // 移动构造 string(string&& s) :_str(nullptr) , _size(0) , _capacity(0) { cout << "string(string&& s) -- 移动语义" << endl; swap(s); } // 移动赋值 string& operator=(string&& s) { cout << "string& operator=(string&& s) -- 移动语义" << endl; swap(s); return *this; } ~string() { delete[] _str; _str = nullptr; } char& operator[](size_t pos) { assert(pos < _size); return _str[pos]; } void reserve(size_t n) { if (n > _capacity) { char* tmp = new char[n + 1]; strcpy(tmp, _str); delete[] _str; _str = tmp; _capacity = n; } } void push_back(char ch) { if (_size >= _capacity) { size_t newcapacity = _capacity == 0 ? 4 : _capacity * 2; reserve(newcapacity); } _str[_size] = ch; ++_size; _str[_size] = '\0'; } //string operator+=(char ch) string& operator+=(char ch) { push_back(ch); return *this; } const char* c_str() const { return _str; } private: char* _str; size_t _size; size_t _capacity; // 不包含最后做标识的\0 }; }
这是我们自己实现的string容器,总体内容跟我之前讲的是一样的,不一样的点就在于多了移动构造和移动赋值。我们先来说说移动构造,观察完代码我们不难发现,移动构造相比于拷贝构造本身就会少一层构造,这是因为拷贝构造的形参是左值引用,而移动构造的形参是右值引用,左值我们不能随意更改,因为逻辑上它是出了这个函数作用域照样存在的变量,随意修改可能会对程序造成无法预测的影响,所以我们会中间加上一次构造充当临时变量来实现深拷贝,而我们的移动构造就不需要考虑这个问题,编译器一旦识别它是个右值,那么它就会调用移动构造,我们知道右值对程序的影响不会那么大,绝大多数情况就是出了这个函数作用域就销毁了,所以我们可以直接进行数据的交换。
我们再来看看移动赋值,移动赋值跟传统赋值的区别就在于一个需要调用拷贝构造再进行交换,而另一个只需要直接交换就可以了,原因我之前也说过了,因为对形参的定义不同导致其实现不同,实现得按各个语法的概念去进行设计。
左值引用的使用场景:
做参数和做返回值都可以提高效率。
void func1(kuruomi::string s) {} void func2(const kuruomi::string& s) {} int main() { kuruomi::string s1("hello world"); // func1和func2的调用我们可以看到左值引用做参数减少了拷贝,提高效率的使用场景和价值 func1(s1); cout << "func1()" << endl; func2(s1); cout << "func2()" << endl; // string operator+=(char ch) 传值返回存在深拷贝 // string& operator+=(char ch) 传左值引用没有拷贝提高了效率 s1 += '!'; return 0; }
左值引用的短板:
但是当函数返回对象是一个局部变量,出了函数作用域就不存在了,就不能使用左值引用返回, 只能传值返回。例如:bit::string to_string(int value)函数中可以看到,这里只能使用传值返回, 传值返回会导致至少1次拷贝构造(如果是一些旧一点的编译器可能是两次拷贝构造)。
namespace bit { bit::string to_string(int value) { bool flag = true; if (value < 0) { flag = false; value = 0 - value; } bit::string str; while (value > 0) { int x = value % 10; value /= 10; str += ('0' + x); } if (flag == false) { str += '-'; } std::reverse(str.begin(), str.end()); return str; } } int main() { // 在bit::string to_string(int value)函数中可以看到,这里 // 只能使用传值返回,传值返回会导致至少1次拷贝构造(如果是一些旧一点的编译器可能是两次拷 //贝构造)。 bit::string ret1 = bit::to_string(1234); bit::string ret2 = bit::to_string(-1234); return 0; }
右值引用和移动语义解决上述问题:
在bit::string中增加移动构造,移动构造本质是将参数右值的资源窃取过来,占位已有,那么就不用做深拷贝了,所以它叫做移动构造,就是窃取别人的资源来构造自己。
// 移动构造 string(string&& s) :_str(nullptr) , _size(0) , _capacity(0) { cout << "string(string&& s) -- 移动语义" << endl; swap(s); } int main() { bit::string ret2 = bit::to_string(-1234); return 0; }
再运行上面bit::to_string的两个调用,我们会发现,这里没有调用深拷贝的拷贝构造,而是调用了移动构造,移动构造中没有新开空间,拷贝数据,所以效率提高了。
不仅仅有移动构造,还有移动赋值:
在bit::string类中增加移动赋值函数,再去调用bit::to_string(1234),不过这次是将 bit::to_string(1234)返回的右值对象赋值给ret1对象,这时调用的是移动构造。
// 移动赋值 string& operator=(string&& s) { cout << "string& operator=(string&& s) -- 移动语义" << endl; swap(s); return *this; } int main() { bit::string ret1; ret1 = bit::to_string(1234); return 0; } // 运行结果: // string(string&& s) -- 移动语义 // string& operator=(string&& s) -- 移动语义
这里运行后,我们看到调用了一次移动构造和一次移动赋值。因为如果是用一个已经存在的对象接收,编译器就没办法优化了。bit::to_string函数中会先用str生成构造生成一个临时对象,但是我们可以看到,编译器很聪明的在这里把str识别成了右值,调用了移动构造。然后在把这个临时对象做为bit::to_string函数调用的返回值赋值给ret1,这里调用的移动赋值。
STL中的容器都是增加了移动构造和移动赋值:
http://www.cplusplus.com/reference/string/string/string/
http://www.cplusplus.com/reference/vector/vector/vector/
4.4 右值引用引用左值及其一些更深入的使用场景分析
按照语法,右值引用只能引用右值,但右值引用一定不能引用左值吗?因为:有些场景下,可能真的需要用右值去引用左值实现移动语义。当需要用右值引用引用一个左值时,可以通过move函数将左值转化为右值。C++11中,std::move()函数位于头文件中,该函数名字具有迷惑性, 它并不搬移任何东西,唯一的功能就是将一个左值强制转化为右值引用,然后实现移动语义。
int main() { bit::string s1("hello world"); // 这里s1是左值,调用的是拷贝构造 bit::string s2(s1); // 这里我们把s1 move处理以后, 会被当成右值,调用移动构造 // 但是这里要注意,一般是不要这样用的,因为我们会发现s1的 // 资源被转移给了s3,s1被置空了。 bit::string s3(std::move(s1)); return 0; }
STL容器插入接口函数也增加了右值引用版本:
http://www.cplusplus.com/reference/list/list/push_back/
http://www.cplusplus.com/reference/vector/vector/push_back/
int main() { list<bit::string> lt; bit::string s1("1111"); // 这里调用的是拷贝构造 lt.push_back(s1); // 下面调用都是移动构造 lt.push_back("2222"); lt.push_back(std::move(s1)); return 0; } //运行结果: // string(const string& s) -- 深拷贝 // string(string&& s) -- 移动语义 // string(string&& s) -- 移动语义
4.5 完美转发
模板中的&& 万能引用
void Fun(int& x) { cout << "左值引用" << endl; } void Fun(const int& x) { cout << "const 左值引用" << endl; } void Fun(int&& x) { cout << "右值引用" << endl; } void Fun(const int&& x) { cout << "const 右值引用" << endl; } // 模板中的&&不代表右值引用,而是万能引用,其既能接收左值又能接收右值。 // 模板的万能引用只是提供了能够接收同时接收左值引用和右值引用的能力, // 但是引用类型的唯一作用就是限制了接收的类型,后续使用中都退化成了左值, // 我们希望能够在传递过程中保持它的左值或者右值的属性, 就需要用我们下面学习的完美转发 template<typename T> void PerfectForward(T&& t) { Fun(t); } int main() { PerfectForward(10); // 右值 int a; PerfectForward(a); // 左值 PerfectForward(std::move(a)); // 右值 const int b = 8; PerfectForward(b); // const 左值 PerfectForward(std::move(b)); // const 右值 return 0; }
如:
大家可以看到确实都退化成了左值。
std::forward 完美转发在传参的过程中保留对象原生类型属性
void Fun(int& x) { cout << "左值引用" << endl; } void Fun(const int& x) { cout << "const 左值引用" << endl; } void Fun(int&& x) { cout << "右值引用" << endl; } void Fun(const int&& x) { cout << "const 右值引用" << endl; } // std::forward<T>(t)在传参的过程中保持了t的原生类型属性。 template<typename T> void PerfectForward(T&& t) { Fun(std::forward<T>(t)); } int main() { PerfectForward(10); // 右值 int a; PerfectForward(a); // 左值 PerfectForward(std::move(a)); // 右值 const int b = 8; PerfectForward(b); // const 左值 PerfectForward(std::move(b)); // const 右值 return 0; }
完美转发实际中的使用场景:
template<class T> struct ListNode { ListNode* _next = nullptr; ListNode* _prev = nullptr; T _data; }; template<class T> class List { typedef ListNode<T> Node; public: List() { _head = new Node; _head->_next = _head; _head->_prev = _head; } void PushBack(T&& x) { //Insert(_head, x); Insert(_head, std::forward<T>(x)); } void PushFront(T&& x) { //Insert(_head->_next, x); Insert(_head->_next, std::forward<T>(x)); } void Insert(Node* pos, T&& x) { Node* prev = pos->_prev; Node* newnode = new Node; newnode->_data = std::forward<T>(x); // 关键位置 // prev newnode pos prev->_next = newnode; newnode->_prev = prev; newnode->_next = pos; pos->_prev = newnode; } void Insert(Node* pos, const T& x) { Node* prev = pos->_prev; Node* newnode = new Node; newnode->_data = x; // 关键位置 // prev newnode pos prev->_next = newnode; newnode->_prev = prev; newnode->_next = pos; pos->_prev = newnode; } private: Node* _head; }; int main() { List<bit::string> lt; lt.PushBack("1111"); lt.PushFront("2222"); return 0; }
运行截图:
大家可以看到万能引用配合完美转发就可以让我们的容器实现插入删除等操作时自动去调用对应的左值版本和右值版本,而且代码不用写两遍。