二分查找算法专题(1)

news2025/1/24 10:45:11

找往期文章包括但不限于本期文章中不懂的知识点:

个人主页:我要学编程(ಥ_ಥ)-CSDN博客

所属专栏: 优选算法专题

目录

二分查找算法的介绍 

704. 二分查找

34. 在排序数组中查找元素的第一个和 最后一个位置

35. 搜索插入位置 

69. x的平方根 

总结


二分查找算法的介绍 

想必大家对这个算法应该不算陌生了,在C语言阶段就已经学习过了。 其是在暴力枚举的基础上进行优化的。例如:在一个有序数组中查找某个元素是否存在。

但是二分查找算法也有缺点,就是需要数据有二段性,不一定是数组全部有序。

二分查找算法其实也是双指针算法中对撞指针的一种拓展,主要是利用了数据的二段性。

下面我们就来进行练习。

704. 二分查找

题目:

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target  ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1


示例 1:

输入: nums = [-1,0,3,5,9,12], target = 9输出: 4
解释: 9 出现在 nums 中并且下标为 4

示例 2:

输入: nums = [-1,0,3,5,9,12], target = 2输出: -1
解释: 2 不存在 nums 中因此返回 -1

提示:

  1. 你可以假设 nums 中的所有元素是不重复的。
  2. n 将在 [1, 10000]之间。
  3. nums 的每个元素都将在 [-9999, 9999]之间。

思路:这里既可以使用最简单的暴力枚举,也可以使用二分查找来解决。

代码实现:

暴力枚举:

class Solution {
    public int search(int[] nums, int target) {
        for (int i = 0; i < nums.length; i++) {
            if (nums[i] == target) {
                return i;
            }
        }
        return -1;
    }
}

 二分查找:

class Solution {
    public int search(int[] nums, int target) {
        int left = 0;
        int right = nums.length-1;
        while (left <= right) { // 这里得判断=的情况
            int mid = (left+right) / 2; // 这里可能会有溢出的风险
            if (nums[mid] > target) {
                right = mid-1;
            } else if (nums[mid] < target) {
                left = mid+1;
            } else {
                return mid;
            }
        }
        return -1;
    }
}

注意:由于本题数据量不是很大,因此 mid = (left+right) / 2; 就不会溢出,但是当数据量非常大时,两者相加就会导致溢出。有小伙伴可能会有疑惑:left 为 0,right 在 int 中,为什么会导致溢出呢?确实这种情况是正常的,但是当第二次计算mid 且left 为上一次的mid 值呢?这就会溢出了。解决办法为:mid = left + (right - left)/2;上面这个题目只是来练练手,下面才开始真正的算法题。

34. 在排序数组中查找元素的第一个和 最后一个位置

题目:

给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。

如果数组中不存在目标值 target,返回 [-1, -1]

你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。

示例 1:

输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]

示例 2:

输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]

示例 3:

输入:nums = [], target = 0
输出:[-1,-1]

提示:

  • 0 <= nums.length <= 105
  • -109 <= nums[i] <= 109
  • nums 是一个非递减数组
  • -109 <= target <= 109

思路:题目说给的数组是非递减的,什么意思呢?

这里要查找的不是一个元素,而是一组连续的数据,也就是一段连续的子区间。 这里可能有小伙伴会想到我们前面学习的滑动窗口算法求子序列的问题。 但是这里不应该优先使用这个方法,因为滑动窗口算法是同向双指针, 而这里我们推测出了数据的特性,应该优先使用二分查找。

这里是要查找一组数据的端点下标,那么我们就可以直接忽略这组数据的中间,直接找端点即可。那么这就从查找一段数据,变为了查找两个值。但是新的问题又来了,怎么找端点呢?相信有聪明的小伙伴已经想到怎么做了。直接暴力枚举去遍历数组就完了。没错,这虽然是一个笨办法,但是总好过没有办法。

遍历的方式:从数组最左端开始遍历,找左端点,接着从数组最右端开始,找右端点即可。

代码实现:

class Solution {
    public int[] searchRange(int[] nums, int target) {
        int[] ans = {-1,-1};
        if (nums.length == 0) { // 排除特殊情况
            return ans;
        }
        // 找左端点
        int left = 0;
        while (left < nums.length && nums[left] != target) { // 防止越界
            left++;
        }
        if (left == nums.length) { // 数组中没有目标值
            return ans;
        } else {
            ans[0] = left;
        }
        // 找右端点
        int right = nums.length-1;
        while (right >= 0 && nums[right] != target) { // 防止越界
            right--;
        }
        if (right >= 0) {
            ans[1] = right;
        }
        return ans;
    }
}

虽然这是暴力枚举,但是从力扣上面的结果来看,还是不错的。

上面的方法可以说是流氓做法了,不符合题目的要求:用二分查找来解决。

二分查找同样还是去找符合数据的左端点和右端点。

寻找左端点过程:

寻找右端点过程(精简版):

上面处理这么多,其实就是在证明三件事:

1、根据查找的端点位置,从而划分了合法区域和非法区域,因为端点位置肯定是在有效区域内的。再根据 left 和 right 的相对位置来判断下一步的走向。

左端点:left = mid + 1 ---> 跳出非法区域;right = mid ---> 保留在合法区域。

右端点:left = mid ---> 保留在合法区域;right = mid -1 ---> 跳出非法区域。

2、在查找的过程中,中点的选取。根据查找的端点位置和第一点的结论,从而决定中点的位置。

左端点:right = mid 的特性可能会导致最后死循环,因此中点尽量要靠左,即 mid = left + (right-left) / 2。

右端点:left = mid 的特性可能会导致最后死循环,因此中点尽量要靠右,即 mid = left + (right-left +1) / 2。

3、 查找左端点和右端点的过程中,循环条件只能是 left < right,绝不能出现等于的情况,可能会导致死循环。因为一旦相遇并且结果满足 right 或者 left 不动的情况,那么就会死循环。

上面这些细节问题处理完之后,代码就比较好写了。

代码实现:

class Solution {
    public int[] searchRange(int[] nums, int target) {
        int[] ans = {-1,-1};
        if (nums.length == 0) { // 排除特殊情况
            return ans;
        }
        // 找左端点
        int left = 0;
        int right = nums.length-1;
        while (left < right) {
            int mid = left + (right-left) / 2; // 找靠左的位置
            if (nums[mid] >= target) {
                right = mid; // 保证在合法区域内
            } else {
                left = mid+1; // 保证有可能跳出非法区域
            }
        }
        // 走到这里,说明left与right相遇了
        if (nums[left] == target) { // 判断是否为左端点
            ans[0] = left; // left 与 right 都是可以的
        } else { // 说明数组中没有要找的数据
            return ans;
        }
        // 找右端点
        left = 0;
        right = nums.length-1;
        while (left < right) {
            int mid = left + (right-left+1) / 2; // 找靠右的位置
            if (nums[mid] <= target) {
                left = mid; // 保证在合法区域内
            } else {
                right = mid-1; // 保证有可能跳出非法区域
            }
        }
        // 走到这里,说明left与right相遇了
        if (nums[right] == target) { // 判断是否为右端点
            ans[1] = right; // left 与 right 都是可以的
        }
        return ans;
    }
}

还有两个要注意的地方:

因此数组中一旦存在我们要查找的数据的话,肯定是存在左右端点的。

35. 搜索插入位置 

题目:

给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

请必须使用时间复杂度为 O(log n) 的算法。

示例 1:

输入: nums = [1,3,5,6], target = 5
输出: 2

示例 2:

输入: nums = [1,3,5,6], target = 2
输出: 1

示例 3:

输入: nums = [1,3,5,6], target = 7
输出: 4

提示:

  • 1 <= nums.length <= 104
  • -104 <= nums[i] <= 104
  • nums 为 无重复元素 的 升序 排列数组
  • -104 <= target <= 104

思路:这里和第一题有点类似,但不同的是这一题的数组中可能不存在 target 这个数据。但是方法还是类似的。

当 [target,right] 区间是合法区间时,right = mid ---> 保证 right 在合法区间内,left = mid+1 ---> 保证 left 有可能进入合法区间,mid = left + (right - left) / 2 ---> 靠左的位置。同理,当[left,target]为合法区间时,也是类似的,这里就不过多赘述了。

代码实现:

1、当 [left, target] 是合法区间时:

class Solution {
    public int searchInsert(int[] nums, int target) {
        int left = 0;
        int right = nums.length-1;
        // 假设[left, target]是合法区间
        while (left < right) {
            int mid = left + (right-left+1) / 2;
            if (nums[mid] > target) {
                right = mid-1;
            } else {
                left = mid;
            }
        }
        // 判断是否存在
        if (nums[left] == target) { // 实际存在
            return left;
        } else { // 不存在
            // 判断是插入左边还是右边位置
            if (nums[left] > target) {
                return left;
            } else {
                return left+1;
            }
        }
    }
}

2、 当 [target,right] 是合法区间时:

class Solution {
    public int searchInsert(int[] nums, int target) {
        int left = 0;
        int right = nums.length-1;
        // 假设[target, right]是合法区间
        while (left < right) {
            int mid = left + (right-left) / 2;
            if (nums[mid] >= target) {
                right = mid;
            } else {
                left = mid+1;
            }
        }
        // 判断是否存在
        if (nums[left] == target) { // 实际存在
            return left;
        } else { // 不存在
            // 判断是插入左边还是右边位置
            if (nums[left] > target) {
                return left;
            } else {
                return left+1;
            }
        }
    }
}

69. x的平方根 

题目:

给你一个非负整数 x ,计算并返回 x 的 算术平方根 。

由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。

注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5 。

示例 1:

输入:x = 4
输出:2

示例 2:

输入:x = 8
输出:2
解释:8 的算术平方根是 2.82842..., 由于返回类型是整数,小数部分将被舍去。

提示:

  • 0 <= x <= 231 - 1

思路: 题目让我们求一个大于等于0整数的算术平方根,并且对最终结果进行向下取整。

方法一:直接暴力枚举即可。

代码实现:

class Solution {
    // 暴力枚举
    public int mySqrt(int x) {
        if (x == 0 || x == 1) { // 排除特殊情况
            return x;
        }
        for (long i = 1; i <= x; i++) {
            if (i * i == x) {
                return (int)i;
            } else if (i * i > x) {
                return (int)i-1;
            }
        }
        return -1; // 这里只是过审
    }
}

注意:由于最后面的 return -1;只是为了让我们的代码编译通过,并不起实际的作用。

我们前面的暴力枚举就是把 [1,x] 之间的数据按照升序的方式挨个使了个遍。 从这里我们就可以使用二分查找算法了。

其实我们最终的目的就是为了找到大于或者的结果,然后再让大于的-1,等于的不变,而这些只能让 target 和 left 在一起。

代码实现:

class Solution {
    // 二分查找
    public int mySqrt(int x) {
        if (x == 0 || x == 1) { // 排除特殊情况
            return x;
        }
        long left = 1;
        long right = x;
        // 最终的结果是向下取整的,即 <= 是合法区域的
        while (left < right) {
            long mid = left + (right-left+1) / 2;
            if (mid*mid > x) {
                right = mid-1;
            } else {
                left = mid;
            }
        }
        // 找到了
        return (int)left;
    }
}

注意:

1、数据量是比较大的,因此相乘的结果会溢出,我们得用 long类型来接收。 

2、这里的二分查找是不能使用第一道题的那种的。

其实没弄明白也没关系,这里反正就两种情况,可以直接去套用,再不济暴力枚举总可以了吧。

总结

1、对于查找固定的数据的情况,可以使用第一题中的二分查找方法:根据要查找的结果,进行比较分为三种情况——大于、等于、小于。

2、对于范围(区间)查找和不确定性查找的情况,可以使用我们后面画图推出来的二分查找:根据查找的结果,进行比较分为两种情况——合法区域、非法区域(根据要查找的数据进行分区),然后再分别更新 left 和 right——合法的一定要确保依旧存在于合法区域,非法的要确保有希望调到合法区域。再就是计算中点的方式和循环条件的确定,都是由 left 和 right 的变化来决定的(具体可见图)。

我们以后常用的也是第二种二分查找的方法。

好啦!本期 二分查找算法专题(1)的学习之旅就到此结束啦!我们下一期再一起学习吧!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2185145.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

10-指针和多维数组

多维数组&#xff0c;本质上是数组的数组&#xff1a; 一、多维数组&#xff1a; int B[2][3] int(*P)[3] B;Print B //400 Print *B; //400 Print B[0] //400 Print &B[0][0] // 400B[i][j] *(B[i]j) *(*(Bi)j); int C[3][2][2] int(*p)[2][2] C; Print C //800 Prin…

大数据开发--1.1大数据概论

目录 一.大数据的概念 什么是大数据&#xff1f; 二. 大数据的特点 三. 大数据应用场景 四. 大数据分析业务步骤 大数据分析的业务流程&#xff1a; 五.大数据职业规划 职业方向 岗位技术要求 六. 大数据学习路线 一.大数据的概念 什么是大数据&#xff1f; 数据 世界…

【北京迅为】《STM32MP157开发板嵌入式开发指南》- 第十六章 Linux 第一个程序 HelloWorld

iTOP-STM32MP157开发板采用ST推出的双核cortex-A7单核cortex-M4异构处理器&#xff0c;既可用Linux、又可以用于STM32单片机开发。开发板采用核心板底板结构&#xff0c;主频650M、1G内存、8G存储&#xff0c;核心板采用工业级板对板连接器&#xff0c;高可靠&#xff0c;牢固耐…

LC记录二:丑数专题,一文秒解丑数3题

文章目录 263.丑数1264.丑数21201.丑数3 263.丑数1 https://leetcode.cn/problems/ugly-number/description/ 简单题&#xff0c;丑数只包含质因子2、3、5。所以直接使用 n 循环 除 2 3 5最后判断结果是否等于1即可。 代码&#xff1a; class Solution {public boolean isUg…

01_SQLite

文章目录 ** SQLite 存储各类和数据类型 **** SQLite 五种亲缘类型** SQLite 创建数据表删除数据表插入数据信息从数据表中获取数据&#xff0c;以结果表的形式返回数据&#xff08;结果集&#xff09;updatedistinctorder bygroup byhaving触发器删除一个触发器&#xff08;tr…

计网问答大题(期末复习)

计网总结笔记 概述 互联网的 2 个重要基本特点&#xff1a;连通性&#xff0c;资源共享 从互联网的工作方式上看&#xff0c;可以划分为两大块&#xff1a; •边缘部分&#xff1a; 由所有连接在互联网上的主机组成&#xff0c;由用户直接使用&#xff0c;用来进行通信&…

并查集【数据结构与算法】【C语言版-笔记】

目录 一、需求分析二、并查集三、代码实现3.1 Find函数3.2 Union函数3.3 优化13.4 终极优化2---压缩策略 一、需求分析 假设有n个互不相交的集合 ◼问题1&#xff1a;给定某个集合中的一个元素&#xff0c;查找该元素属于哪个集合&#xff1f; ◼问题2&#xff1a;如何合并两个…

建筑业挂靠行为的防范建议

在建筑行业中&#xff0c;挂靠行为的普遍存在给许多企业带来了法律风险和信誉风险。为了防范这些风险&#xff0c;企业需要采取一系列有效的措施。 一、加强资质管理 企业应当通过合法途径获取和提升自身的资质等级&#xff0c;避免因资质不足而产生挂靠的需求。加强资质管理是…

【半导体物理基础】第1章 半导体中的电子状态和能带,晶格结构,有效质量

目录 1.1 半导体晶格结构和结合性质 固体的种类 典型晶体 元素半导体 几种晶胞结构 晶向指数与晶面 半导体的晶体结构 金刚石结构 金刚石结构的结晶学原胞 硅、锗相关参数 硅、锗相关参数计算 闪锌矿结构 纤锌矿结构 氯化钠型结构 1.2 半导体中的电子状态和能带…

Study-Oracle-10-ORALCE19C-RAC集群搭建

一路走来,所有遇到的人,帮助过我的、伤害过我的都是朋友,没有一个是敌人。 ORACLE --RAC 搭建理念:准备工作要仔细,每个参数及配置都到仔细核对。环境准备完成后,剩下的就是图像化操作,没啥难度,所以图形化操作偷懒不续写了。 一、硬件信息及配套软件 1、硬件设置 RAC…

客厅落地台灯怎么摆放?五款客厅落地台灯款式分享

客厅落地台灯怎么摆放&#xff1f;客厅落地台灯是提升光线环境在室内光线质量的关键设备。但如果不慎购买到低质量的客厅落地台灯&#xff0c;可能会导致光线效果不佳&#xff0c;进而影响视力健康。因此&#xff0c;挑选一个可靠的品牌至关重要。那么&#xff0c;客厅落地台灯…

ubuntu 18.04 cuda 11.01 gpgpu-sim 裸机编译

1&#xff0c;环境 ubuntu 18.04 x86_64 cuda 11.01 gpgpu-sim master commit 90ec3399763d7c8512cfe7dc193473086c38ca38 2&#xff0c;预备环境 一个比较新的 ubuntu 18.04&#xff0c;为了迎合 cuda 11.01 的版本需求 安装如下软件&#xff1a; sudo apt-get instal…

Thinkphp/Laravel基于vue的的出版社书籍阅读管理系统

目录 技术栈和环境说明具体实现截图设计思路关键技术课题的重点和难点&#xff1a;框架介绍数据访问方式PHP核心代码部分展示代码目录结构解析系统测试详细视频演示源码获取 技术栈和环境说明 采用PHP语言开发&#xff0c;开发环境为phpstudy 开发工具notepad并使用MYSQL数据库…

netty之NettyClient半包粘包处理、编码解码处理、收发数据方式

前言 Netty开发中&#xff0c;客户端与服务端需要保持同样的&#xff1b;半包粘包处理&#xff0c;编码解码处理、收发数据方式&#xff0c;这样才能保证数据通信正常。在前面NettyServer的章节中我们也同样处理了&#xff1b;半包粘包、编码解码等&#xff0c;为此在本章节我们…

Pikichu-xss实验案例-通过xss获取cookie

原理图&#xff1a; pikachu提供了一个pkxss后台&#xff1b; 该后台可以把获得的cookie信息显示出来&#xff1b; 查看后端代码cookie.php&#xff1a;就是获取cookie信息&#xff0c;保存起来&#xff0c;然后重定向跳转到目标页面&#xff1b;修改最后从定向的ip&#xff0…

PTH 实验

1. 实验网络拓扑 kali: 192.168.72.128win2008: 192.168.135.129 192.168.72.139win7: 192.168.72.149win2012:(DC) 192.168.72.131 2. EXPLOIT 0x0. NTLM hash计算脚本 python3 -c import hashlib,binascii; print (binascii.hexlify(hashlib.new("md4", "…

基于51单片机的3路电压测量-proteus仿真

地址&#xff1a;https://pan.baidu.com/s/1PG2vzudc1QKHGSBfjPF0eQ 提取码&#xff1a;1234 仿真图&#xff1a; 芯片/模块的特点&#xff1a; AT89C52/AT89C51简介&#xff1a; AT89C52/AT89C51是一款经典的8位单片机&#xff0c;是意法半导体&#xff08;STMicroelectron…

Leecode热题100-84.柱状图中的最大矩形

给定 n 个非负整数&#xff0c;用来表示柱状图中各个柱子的高度。每个柱子彼此相邻&#xff0c;且宽度为 1 。 求在该柱状图中&#xff0c;能够勾勒出来的矩形的最大面积。 示例 1: 输入&#xff1a;heights [2,1,5,6,2,3] 输出&#xff1a;10 解释&#xff1a;最大的矩形为图…

SQL SERVER 从嫌弃存储到爱上存储过程我给存储过程开发了版本控制工具和远程调试功能...

优缺点 SQL SERVER 爱上存储过程我给存储过程开发了版本控制工具和远程调试功能 先说说 存储过程的优缺点吧存储过程的优点 提高执行效率&#xff1a;存储过程是预编译的&#xff0c;执行速度较快&#xff0c;减少了网络传输量。 减少开发工作量&#xff1a;存储过程可以将复杂…

删除GitHub仓库的fork依赖 (Delete fork dependency of a GitHub repository)

解除fork仓库依赖的原因 在 Fork 了一个仓库&#xff0c;进行了大量修改&#xff0c;导致与父仓库的功能差异很大。 在每次 Pull Request 的默认目标分支是父仓库&#xff0c;很容易就会 PR 到父仓库里。 Fork 的仓库被其他人提出贡献并使用了&#xff0c;但不能显示贡献者…