【C++】透过STL源代码深度剖析vector的底层

news2024/11/19 17:47:45


Blog’s 主页: 白乐天_ξ( ✿>◡❛)
🌈 个人Motto:他强任他强,清风拂山冈!
🔥 所属专栏:C++深入学习笔记
💫 欢迎来到我的学习笔记!

参考博客:【C++】透过STL源码深度剖析及模拟实现vector-CSDN博客

一、源码引入

这里我们学习的是基于SGI版本的STL源码。源码如下:

// stl_vector.h

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1996
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/* NOTE: This is an internal header file, included by other STL headers.
 *   You should not attempt to use it directly.
 */

#ifndef __SGI_STL_INTERNAL_VECTOR_H
#define __SGI_STL_INTERNAL_VECTOR_H

__STL_BEGIN_NAMESPACE 

#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#endif

template <class T, class Alloc = alloc>
class vector {
public:
  typedef T value_type;
  typedef value_type* pointer;
  typedef const value_type* const_pointer;
  typedef value_type* iterator;
  typedef const value_type* const_iterator;
  typedef value_type& reference;
  typedef const value_type& const_reference;
  typedef size_t size_type;
  typedef ptrdiff_t difference_type;

#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
  typedef reverse_iterator<const_iterator> const_reverse_iterator;
  typedef reverse_iterator<iterator> reverse_iterator;
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
  typedef reverse_iterator<const_iterator, value_type, const_reference, 
                           difference_type>  const_reverse_iterator;
  typedef reverse_iterator<iterator, value_type, reference, difference_type>
          reverse_iterator;
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
protected:
  typedef simple_alloc<value_type, Alloc> data_allocator;
  iterator start;
  iterator finish;
  iterator end_of_storage;
  void insert_aux(iterator position, const T& x);
  void deallocate() {
    if (start) data_allocator::deallocate(start, end_of_storage - start);
  }

  void fill_initialize(size_type n, const T& value) {
    start = allocate_and_fill(n, value);
    finish = start + n;
    end_of_storage = finish;
  }
public:
  iterator begin() { return start; }
  const_iterator begin() const { return start; }
  iterator end() { return finish; }
  const_iterator end() const { return finish; }
  reverse_iterator rbegin() { return reverse_iterator(end()); }
  const_reverse_iterator rbegin() const { 
    return const_reverse_iterator(end()); 
  }
  reverse_iterator rend() { return reverse_iterator(begin()); }
  const_reverse_iterator rend() const { 
    return const_reverse_iterator(begin()); 
  }
  size_type size() const { return size_type(end() - begin()); }
  size_type max_size() const { return size_type(-1) / sizeof(T); }
  size_type capacity() const { return size_type(end_of_storage - begin()); }
  bool empty() const { return begin() == end(); }
  reference operator[](size_type n) { return *(begin() + n); }
  const_reference operator[](size_type n) const { return *(begin() + n); }

  vector() : start(0), finish(0), end_of_storage(0) {}
  vector(size_type n, const T& value) { fill_initialize(n, value); }
  vector(int n, const T& value) { fill_initialize(n, value); }
  vector(long n, const T& value) { fill_initialize(n, value); }
  explicit vector(size_type n) { fill_initialize(n, T()); }

  vector(const vector<T, Alloc>& x) {
    start = allocate_and_copy(x.end() - x.begin(), x.begin(), x.end());
    finish = start + (x.end() - x.begin());
    end_of_storage = finish;
  }
#ifdef __STL_MEMBER_TEMPLATES
  template <class InputIterator>
  vector(InputIterator first, InputIterator last) :
    start(0), finish(0), end_of_storage(0)
  {
    range_initialize(first, last, iterator_category(first));
  }
#else /* __STL_MEMBER_TEMPLATES */
  vector(const_iterator first, const_iterator last) {
    size_type n = 0;
    distance(first, last, n);
    start = allocate_and_copy(n, first, last);
    finish = start + n;
    end_of_storage = finish;
  }
#endif /* __STL_MEMBER_TEMPLATES */
  ~vector() { 
    destroy(start, finish);
    deallocate();
  }
  vector<T, Alloc>& operator=(const vector<T, Alloc>& x);
  void reserve(size_type n) {
    if (capacity() < n) {
      const size_type old_size = size();
      iterator tmp = allocate_and_copy(n, start, finish);
      destroy(start, finish);
      deallocate();
      start = tmp;
      finish = tmp + old_size;
      end_of_storage = start + n;
    }
  }
  reference front() { return *begin(); }
  const_reference front() const { return *begin(); }
  reference back() { return *(end() - 1); }
  const_reference back() const { return *(end() - 1); }
  void push_back(const T& x) {
    if (finish != end_of_storage) {
      construct(finish, x);
      ++finish;
    }
    else
      insert_aux(end(), x);
  }
  void swap(vector<T, Alloc>& x) {
    __STD::swap(start, x.start);
    __STD::swap(finish, x.finish);
    __STD::swap(end_of_storage, x.end_of_storage);
  }
  iterator insert(iterator position, const T& x) {
    size_type n = position - begin();
    if (finish != end_of_storage && position == end()) {
      construct(finish, x);
      ++finish;
    }
    else
      insert_aux(position, x);
    return begin() + n;
  }
  iterator insert(iterator position) { return insert(position, T()); }
#ifdef __STL_MEMBER_TEMPLATES
  template <class InputIterator>
  void insert(iterator position, InputIterator first, InputIterator last) {
    range_insert(position, first, last, iterator_category(first));
  }
#else /* __STL_MEMBER_TEMPLATES */
  void insert(iterator position,
              const_iterator first, const_iterator last);
#endif /* __STL_MEMBER_TEMPLATES */

  void insert (iterator pos, size_type n, const T& x);
  void insert (iterator pos, int n, const T& x) {
    insert(pos, (size_type) n, x);
  }
  void insert (iterator pos, long n, const T& x) {
    insert(pos, (size_type) n, x);
  }

  void pop_back() {
    --finish;
    destroy(finish);
  }
  iterator erase(iterator position) {
    if (position + 1 != end())
      copy(position + 1, finish, position);
    --finish;
    destroy(finish);
    return position;
  }
  iterator erase(iterator first, iterator last) {
    iterator i = copy(last, finish, first);
    destroy(i, finish);
    finish = finish - (last - first);
    return first;
  }
  void resize(size_type new_size, const T& x) {
    if (new_size < size()) 
      erase(begin() + new_size, end());
    else
      insert(end(), new_size - size(), x);
  }
  void resize(size_type new_size) { resize(new_size, T()); }
  void clear() { erase(begin(), end()); }

protected:
  iterator allocate_and_fill(size_type n, const T& x) {
    iterator result = data_allocator::allocate(n);
    __STL_TRY {
      uninitialized_fill_n(result, n, x);
      return result;
    }
    __STL_UNWIND(data_allocator::deallocate(result, n));
  }

#ifdef __STL_MEMBER_TEMPLATES
  template <class ForwardIterator>
  iterator allocate_and_copy(size_type n,
                             ForwardIterator first, ForwardIterator last) {
    iterator result = data_allocator::allocate(n);
    __STL_TRY {
      uninitialized_copy(first, last, result);
      return result;
    }
    __STL_UNWIND(data_allocator::deallocate(result, n));
  }
#else /* __STL_MEMBER_TEMPLATES */
  iterator allocate_and_copy(size_type n,
                             const_iterator first, const_iterator last) {
    iterator result = data_allocator::allocate(n);
    __STL_TRY {
      uninitialized_copy(first, last, result);
      return result;
    }
    __STL_UNWIND(data_allocator::deallocate(result, n));
  }
#endif /* __STL_MEMBER_TEMPLATES */


#ifdef __STL_MEMBER_TEMPLATES
  template <class InputIterator>
  void range_initialize(InputIterator first, InputIterator last,
                        input_iterator_tag) {
    for ( ; first != last; ++first)
      push_back(*first);
  }

  // This function is only called by the constructor.  We have to worry
  //  about resource leaks, but not about maintaining invariants.
  template <class ForwardIterator>
  void range_initialize(ForwardIterator first, ForwardIterator last,
                        forward_iterator_tag) {
    size_type n = 0;
    distance(first, last, n);
    start = allocate_and_copy(n, first, last);
    finish = start + n;
    end_of_storage = finish;
  }

  template <class InputIterator>
  void range_insert(iterator pos,
                    InputIterator first, InputIterator last,
                    input_iterator_tag);

  template <class ForwardIterator>
  void range_insert(iterator pos,
                    ForwardIterator first, ForwardIterator last,
                    forward_iterator_tag);

#endif /* __STL_MEMBER_TEMPLATES */
};

template <class T, class Alloc>
inline bool operator==(const vector<T, Alloc>& x, const vector<T, Alloc>& y) {
  return x.size() == y.size() && equal(x.begin(), x.end(), y.begin());
}

template <class T, class Alloc>
inline bool operator<(const vector<T, Alloc>& x, const vector<T, Alloc>& y) {
  return lexicographical_compare(x.begin(), x.end(), y.begin(), y.end());
}

#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER

template <class T, class Alloc>
inline void swap(vector<T, Alloc>& x, vector<T, Alloc>& y) {
  x.swap(y);
}

#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */

template <class T, class Alloc>
vector<T, Alloc>& vector<T, Alloc>::operator=(const vector<T, Alloc>& x) {
  if (&x != this) {
    if (x.size() > capacity()) {
      iterator tmp = allocate_and_copy(x.end() - x.begin(),
                                       x.begin(), x.end());
      destroy(start, finish);
      deallocate();
      start = tmp;
      end_of_storage = start + (x.end() - x.begin());
    }
    else if (size() >= x.size()) {
      iterator i = copy(x.begin(), x.end(), begin());
      destroy(i, finish);
    }
    else {
      copy(x.begin(), x.begin() + size(), start);
      uninitialized_copy(x.begin() + size(), x.end(), finish);
    }
    finish = start + x.size();
  }
  return *this;
}

template <class T, class Alloc>
void vector<T, Alloc>::insert_aux(iterator position, const T& x) {
  if (finish != end_of_storage) {
    construct(finish, *(finish - 1));
    ++finish;
    T x_copy = x;
    copy_backward(position, finish - 2, finish - 1);
    *position = x_copy;
  }
  else {
    const size_type old_size = size();
    const size_type len = old_size != 0 ? 2 * old_size : 1;
    iterator new_start = data_allocator::allocate(len);
    iterator new_finish = new_start;
    __STL_TRY {
      new_finish = uninitialized_copy(start, position, new_start);
      construct(new_finish, x);
      ++new_finish;
      new_finish = uninitialized_copy(position, finish, new_finish);
    }

#       ifdef  __STL_USE_EXCEPTIONS 
    catch(...) {
      destroy(new_start, new_finish); 
      data_allocator::deallocate(new_start, len);
      throw;
    }
#       endif /* __STL_USE_EXCEPTIONS */
    destroy(begin(), end());
    deallocate();
    start = new_start;
    finish = new_finish;
    end_of_storage = new_start + len;
  }
}

template <class T, class Alloc>
void vector<T, Alloc>::insert(iterator position, size_type n, const T& x) {
  if (n != 0) {
    if (size_type(end_of_storage - finish) >= n) {
      T x_copy = x;
      const size_type elems_after = finish - position;
      iterator old_finish = finish;
      if (elems_after > n) {
        uninitialized_copy(finish - n, finish, finish);
        finish += n;
        copy_backward(position, old_finish - n, old_finish);
        fill(position, position + n, x_copy);
      }
      else {
        uninitialized_fill_n(finish, n - elems_after, x_copy);
        finish += n - elems_after;
        uninitialized_copy(position, old_finish, finish);
        finish += elems_after;
        fill(position, old_finish, x_copy);
      }
    }
    else {
      const size_type old_size = size();        
      const size_type len = old_size + max(old_size, n);
      iterator new_start = data_allocator::allocate(len);
      iterator new_finish = new_start;
      __STL_TRY {
        new_finish = uninitialized_copy(start, position, new_start);
        new_finish = uninitialized_fill_n(new_finish, n, x);
        new_finish = uninitialized_copy(position, finish, new_finish);
      }
#         ifdef  __STL_USE_EXCEPTIONS 
      catch(...) {
        destroy(new_start, new_finish);
        data_allocator::deallocate(new_start, len);
        throw;
      }
#         endif /* __STL_USE_EXCEPTIONS */
      destroy(start, finish);
      deallocate();
      start = new_start;
      finish = new_finish;
      end_of_storage = new_start + len;
    }
  }
}

#ifdef __STL_MEMBER_TEMPLATES

template <class T, class Alloc> template <class InputIterator>
void vector<T, Alloc>::range_insert(iterator pos,
                                    InputIterator first, InputIterator last,
                                    input_iterator_tag) {
  for ( ; first != last; ++first) {
    pos = insert(pos, *first);
    ++pos;
  }
}

template <class T, class Alloc> template <class ForwardIterator>
void vector<T, Alloc>::range_insert(iterator position,
                                    ForwardIterator first,
                                    ForwardIterator last,
                                    forward_iterator_tag) {
  if (first != last) {
    size_type n = 0;
    distance(first, last, n);
    if (size_type(end_of_storage - finish) >= n) {
      const size_type elems_after = finish - position;
      iterator old_finish = finish;
      if (elems_after > n) {
        uninitialized_copy(finish - n, finish, finish);
        finish += n;
        copy_backward(position, old_finish - n, old_finish);
        copy(first, last, position);
      }
      else {
        ForwardIterator mid = first;
        advance(mid, elems_after);
        uninitialized_copy(mid, last, finish);
        finish += n - elems_after;
        uninitialized_copy(position, old_finish, finish);
        finish += elems_after;
        copy(first, mid, position);
      }
    }
    else {
      const size_type old_size = size();
      const size_type len = old_size + max(old_size, n);
      iterator new_start = data_allocator::allocate(len);
      iterator new_finish = new_start;
      __STL_TRY {
        new_finish = uninitialized_copy(start, position, new_start);
        new_finish = uninitialized_copy(first, last, new_finish);
        new_finish = uninitialized_copy(position, finish, new_finish);
      }
#         ifdef __STL_USE_EXCEPTIONS
      catch(...) {
        destroy(new_start, new_finish);
        data_allocator::deallocate(new_start, len);
        throw;
      }
#         endif /* __STL_USE_EXCEPTIONS */
      destroy(start, finish);
      deallocate();
      start = new_start;
      finish = new_finish;
      end_of_storage = new_start + len;
    }
  }
}

#else /* __STL_MEMBER_TEMPLATES */

template <class T, class Alloc>
void vector<T, Alloc>::insert(iterator position, 
                              const_iterator first, 
                              const_iterator last) {
  if (first != last) {
    size_type n = 0;
    distance(first, last, n);
    if (size_type(end_of_storage - finish) >= n) {
      const size_type elems_after = finish - position;
      iterator old_finish = finish;
      if (elems_after > n) {
        uninitialized_copy(finish - n, finish, finish);
        finish += n;
        copy_backward(position, old_finish - n, old_finish);
        copy(first, last, position);
      }
      else {
        uninitialized_copy(first + elems_after, last, finish);
        finish += n - elems_after;
        uninitialized_copy(position, old_finish, finish);
        finish += elems_after;
        copy(first, first + elems_after, position);
      }
    }
    else {
      const size_type old_size = size();
      const size_type len = old_size + max(old_size, n);
      iterator new_start = data_allocator::allocate(len);
      iterator new_finish = new_start;
      __STL_TRY {
        new_finish = uninitialized_copy(start, position, new_start);
        new_finish = uninitialized_copy(first, last, new_finish);
        new_finish = uninitialized_copy(position, finish, new_finish);
      }
#         ifdef __STL_USE_EXCEPTIONS
      catch(...) {
        destroy(new_start, new_finish);
        data_allocator::deallocate(new_start, len);
        throw;
      }
#         endif /* __STL_USE_EXCEPTIONS */
      destroy(start, finish);
      deallocate();
      start = new_start;
      finish = new_finish;
      end_of_storage = new_start + len;
    }
  }
}

#endif /* __STL_MEMBER_TEMPLATES */

#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#endif

__STL_END_NAMESPACE 

#endif /* __SGI_STL_INTERNAL_VECTOR_H */

// Local Variables:
// mode:C++
// End:

二、分析源码

源码的分析方法:先看框架,再分析细节,最好要学会画图直观的展现清楚类内部、类之间的关系!例如分析一个类:先分析它的大致框架,功能是什么、核心成员是什么、核心函数是什么、该类的大致方向是做什么。然后再分析类与类之间是什么关系。

2.1 捋顺牵头框架

切记不要看细节,不要一行一行地看;例如这里就是先找到一个大类vector

template <class T, class Alloc = alloc>
class vector {
public:
  typedef T value_type;
  typedef value_type* pointer;
  typedef const value_type* const_pointer;
  typedef value_type* iterator;
  typedef const value_type* const_iterator;
  typedef value_type& reference;
  typedef const value_type& const_reference;
  typedef size_t size_type;
  typedef ptrdiff_t difference_type;

#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
  typedef reverse_iterator<const_iterator> const_reverse_iterator;
  typedef reverse_iterator<iterator> reverse_iterator;
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
  typedef reverse_iterator<const_iterator, value_type, const_reference, 
                           difference_type>  const_reverse_iterator;
  typedef reverse_iterator<iterator, value_type, reference, difference_type>
          reverse_iterator;
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
protected:
  typedef simple_alloc<value_type, Alloc> data_allocator;
  iterator start;
  iterator finish;
  iterator end_of_storage;
  void insert_aux(iterator position, const T& x);
  void deallocate() {
    if (start) data_allocator::deallocate(start, end_of_storage - start);
  }

2.2 分析成员变量

在上一步找到的一个大类里面,开始查找成员变量,成员变量一般在private或者protected里面。

protected:
	iterator start;
	iterator finish;
	iterator end_of_storage;

可以发现这里定义两三个迭代器,在此之前(【链接】string的模拟实现)我们就已经知道迭代器名称是typedef来的,因此在这里我们可以找一下它的typedef,在public位置找到了iterator的重定义位置。这里就找到了iterator最根本的面貌。

typedef T value_type;
typedef value_type* iterator;

在找到成员变量后我们要学会“猜”它的作用:例如猜测start是空间内存的开始位置或者数据开始的位置;猜测finish是数据结束位置;猜测end_of_storage是空间结束位置。猜测是基于自己的学习经验,有依据的进行推测,而并非是乱猜。合理的猜测有助于我们更加顺利的理解源码,但也容易误导我们自己。猜测需要使用后面的步骤进行证实

注意:细节不要硬扣,这里不能涉及太多的细节,我们目前的目标主要是学习它的基本框架。源码的细节都是一层套着一层,关注细节容易绕晕自己,我们应该知道:不要让本应该读绘本的幼儿园小朋友去读《水浒》,即俗语“少不读水浒,老不读三国”。

2.3 分析构造函数

在分析完成员函数后,我们开始分析构造函数vector(……),看看该类的对象初始化以后是什么样的结果。

vector() : start(0), finish(0), end_of_storage(0) {}
vector(size_type n, const T& value) { fill_initialize(n, value); }
vector(int n, const T& value) { fill_initialize(n, value); }
vector(long n, const T& value) { fill_initialize(n, value); }

在这里我们可以发现vector()是初始化为无参的构造函数,接下来我们开始分析核心的接口。

2.4 分析核心接口

一个类的实现会调用很多的接口,我们要关注核心接口、常用接口。例如这里我们查找一下常用的push_back接口。在这里开始证实我们方才的猜测是否正确。

void push_back(const T& x) {
    if (finish != end_of_storage) {
      construct(finish, x);
      ++finish;
    }
    else
      insert_aux(end(), x);
  }

按照我们的猜测以及push_back接口进行画图:

画板

在这里有一个construct函数,我们没有经验时你就会不知道它的作用。在有些项目里面会考虑使用内 存池提高效率,STL的六大组件之一空间配置器(内存池)出来的数据只开辟了空间,并没有进行初始化。

这里就使用了内存池里面的空间,自然是没有进行初始化。它使用了construct进行初始化,头文件是stl_construct.hconstruct是一个类模板的定位new,定位new相当于显示调用构造函数。

// stl_construct.h
template <class T1, class T2>
inline void construct(T1* p, const T2& value) {
  new (p) T1(value);
}

分析到这里就基本印证了我们方才的猜测。如果不确定,还可以继续往下分析。else里面的一种清况:

insert_aux(end(), x);

我们可以右击insert_aux()转到定义:

template <class T, class Alloc>
void vector<T, Alloc>::insert_aux(iterator position, const T& x) {
  if (finish != end_of_storage) {
    construct(finish, *(finish - 1)); // 空间不满,走此处
    ++finish;
    T x_copy = x;
    copy_backward(position, finish - 2, finish - 1);
    *position = x_copy;
  }
  else {
    const size_type old_size = size();// 在这里转到定义
    const size_type len = old_size != 0 ? 2 * old_size : 1;
    iterator new_start = data_allocator::allocate(len);// 这里使用的是内存池开辟的空间
    iterator new_finish = new_start;
    __STL_TRY {
      new_finish = uninitialized_copy(start, position, new_start);
      construct(new_finish, x);
      ++new_finish;
      new_finish = uninitialized_copy(position, finish, new_finish);
    }

根据上面的定义代码,我们可以大概知道if是判断空间足够后的插入数据的操作,else是空间不够、中间插入数据时,后面的数据需要往后挪动,可能会出现抛出异常的清况,就使用了__STL_TRY这一段宏定义过的内容,在抛异常的时候进行捕获。

下面这几句代码就是最终确定我们的猜测的关键代码。

// stl_vector.h
public:
  iterator begin() { return start; }
  //const_iterator begin() const { return start; }
  iterator end() { return finish; }
  //const_iterator end() const { return finish; }
  size_type size() const { return size_type(end() - begin()); }
  size_type capacity() const { return size_type(end_of_storage - begin()); }

通过对 SGI 版本 STL 中vector源码的分析,我们了解了其框架结构、成员变量、构造函数和核心接口的实现原理。vector容器通过巧妙地使用迭代器和内存管理技术,提供了高效的动态数组功能。我们也可以根据现在所掌握的东西,进行vector的模拟实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2183196.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python画笔案例-071 绘制闪闪的红星

1、绘制通闪闪的红星 通过 python 的turtle 库绘制 闪闪的红星,如下图: 2、实现代码 绘制闪闪的红星,以下为实现代码: """闪闪的红星.py """ import time import turtledef xsleep(n):"""防

Elasticsearch 使用误区之六——富文本内容写入前不清洗

0、引言 在很多应用场景中&#xff0c;我们会将富文本内容&#xff08;如 HTML 格式的网页内容&#xff09;存储到 Elasticsearch 中&#xff0c;以实现全文检索。 然而&#xff0c;在实际使用过程中&#xff0c;我们可能会遇到一些问题&#xff0c;比如在检索时&#xff0c;HT…

通信工程学习:什么是FTP文件传输协议

FTP&#xff1a;文件传输协议 FTP&#xff08;File Transfer Protocol&#xff0c;文件传输协议&#xff09;是一种用于在网络上交换文件的协议&#xff0c;它定义了文件传输时使用的命令和响应。作为最古老的互联网协议之一&#xff0c;FTP至今仍被广泛使用&#xff0c;并在网…

Elasticsearch:使用 LLM 实现传统搜索自动化

作者&#xff1a;来自 Elastic Han Xiang Choong 这篇简短的文章是关于将结构化数据上传到 Elastic 索引&#xff0c;然后将纯英语查询转换为查询 DSL 语句&#xff0c;以使用特定过滤器和范围搜索特定条件。完整代码位于此 Github repo 中。 首先&#xff0c;运行以下命令安装…

8639 折半插入排序

### 思路 折半插入排序是一种改进的插入排序算法&#xff0c;通过二分查找来确定插入位置&#xff0c;从而减少比较次数。每次插入时&#xff0c;先用二分查找找到插入位置&#xff0c;然后将元素插入到正确的位置。 ### 伪代码 1. 读取输入的待排序关键字个数n。 2. 读取n个待…

8. Bug 与 Error

计算机程序中的缺陷通常被称为 bug。把它们想象成偶然爬进我们工作中的小东西&#xff0c;会让程序员感觉良好。当然&#xff0c;实际上是我们自己把它们放进去的。 如果程序是思想的结晶&#xff0c;我们可以将错误大致分为思想混乱造成的错误和将思想转化为代码时引入错误造成…

帝都程序猿十二时辰

前言 2019年度国产剧《长安十二时辰》火了&#xff0c;其口碑榜首、节奏紧凑、贴合原著、电影质感&#xff0c;都是这部剧的亮点。而最令人震撼的还是剧中对大唐盛世的还原&#xff0c;长安街坊的市容市貌、长安百姓的生活日常、长安风情的美轮美奂……而关于十二时辰的话题也接…

基础算法--双指针【概念+图解+题解+解释】

更多精彩内容..... &#x1f389;❤️播主の主页✨&#x1f618; Stark、-CSDN博客 本文所在专栏&#xff1a; 数据结构与算法_Stark、的博客-CSDN博客 其它专栏&#xff1a; 学习专栏C语言_Stark、的博客-CSDN博客 项目实战C系列_Stark、的博客-CSDN博客​​​​​​ 座右铭&a…

【算法竞赛】堆

堆是一种树形结构,树的根是堆顶,堆顶始终保持为所有元素的最优值。 有最大堆和最小堆,最大堆的根节点是最大值,最小堆的根节点是最小值。 本节都以最小堆为例进行讲解。 堆一般用二叉树实现,称为二叉堆。 二叉堆的典型应用有堆排序和优先队列。 二叉堆的概念 二叉堆是一棵…

Mybatis-Plus新花样(二)

多种插件 Mybatis-plus给我们提供了各种各样的插件&#xff0c;方便我们快捷开发。 一. 插件配置 Configuration public class MybatisPlusConfig {Beanpublic MybatisPlusInterceptor mybatisPlusInterceptor() {MybatisPlusInterceptor interceptor new MybatisPlusInter…

CMIS5.2_光模块切应用(Application Selection and Instantiation)

目录 重要概念 DP配置、应用声明、应用码的区别 Control Set Provision 和 Commission ApplyDPInit 和 ApplyImmediate 判断应用是否切换成功 以800G光模块的3个应用对应的DP配置举例 1*800G应用&#xff1a; 2*400G应用&#xff1a; 8*100G应用&#xff1a; 应用声明…

ControlGAN:Controllable Text-to-Image Generation

1 研究目的 当前的生成网络通常是不可控的&#xff0c;这意味着如果用户更改句子的某些单词&#xff0c;合成图像将与原始文本生成的合成图像显着不同&#xff1b;当给定的文本描述&#xff08;例如颜色&#xff09;发生变化时&#xff0c;鸟类的相应视觉属性被修改&#xff0c…

我博客网站又遭受CC攻击了,记录一下

2024.9.29凌晨4点攻击开始&#xff0c;攻击目标是我的图床tc.zeruns.tech和博客blog.zeruns.tech&#xff0c;图床用的cdn是多吉云融合CDN&#xff0c;流量被刷了20GB左右就触发峰值关闭CDN了&#xff0c;HTTPS请求次数被刷了1.1亿次&#xff0c;因为设置了QPS&#xff0c;实际…

Oracle bbed编译安装及配置

1. 什么是bbed &#xff1f; Oracle Block Brower and EDitor Tool,是一个可以对oracle data block进行查看&#xff0c;编辑修改的内置工具。对于bbed&#xff0c;oracle本身是不提供支持的。 2. 如何编译bbed环境&#xff1f; 10g版本&#xff1a; 1) 编译bbed cd $ORACL…

【网络基础】网络常识快速入门知识清单,看这篇文章就够了

&#x1f490;个人主页&#xff1a;初晴~ 在现在这个高度智能化的时代&#xff0c;网络几乎已经成为了空气一般无处不在。移动支付、网上购物、网络游戏、视频网站都离不开网络。你能想象如果没有网络的生活将会变成什么样吗&#x1f914; 然而如此对于如此重要的网络&#xf…

深度学习500问——Chapter17:模型压缩及移动端部署(2)

文章目录 17.4.6 低秩分解 17.4.7 总体压缩效果评价指标有哪些 17.4.8 几种轻量化网络结构对比 17.4.9 网络压缩未来研究方向有哪些 17.5 目前有哪些深度学习模型优化加速方法 17.5.1 模型优化加速方法 17.5.2 TensorRT加速原理 17.5.3 TensorRT如何优化重构模型 17.5.4 Tensor…

Unity中Mesh多种网格绘制模式使用方法参考

Unity中MeshFilter中的Mesh默认情况下使用MeshTopology.Trigangles类型绘制网格&#xff0c;就是通常的绘制三角形网格&#xff0c;实际上Mesh有五种绘制模式&#xff0c;对应MeshTopology的枚举&#xff0c;分别是 Triangles网格由三角形构成。Quads网格由四边形构成。Lines网…

多线程——认识线程(Thread)

目录 前言 一、第一个多线程程序 1.程序编写 2.介绍jconsole 二、创建线程 1.继承Thread类 ①重写run方法 ②重写run方法&#xff0c;使用匿名内部类 2.实现Runnable接口 ①重写run方法 ②重写run方法&#xff0c;使用匿名内部类 ③使用 lambda 表达式 三、多线程…

【吊打面试官系列-MySQL面试题】为表中得字段选择合适得数据类型

大家好&#xff0c;我是锋哥。今天分享关于【为表中得字段选择合适得数据类型】面试题&#xff0c;希望对大家有帮助&#xff1b; 为表中得字段选择合适得数据类型 字段类型优先级: 整形>date,time>enum,char>varchar>blob,text 优先考虑数字类型&#xff0c;其次是…

c++类与对象二

文章目录 C类与对象二类的实例化类对象内存大小计算this指针特性 C类与对象二 类的实例化 用类创建对象的过程&#xff0c;称之为类的实例化 类是对对象进行描述的&#xff0c;限定了类有哪些成员&#xff0c;定义一个类并没有开辟内存空间。例如需要学生填写的个人表格&…