第十四周周报:Transformer for CV

news2024/12/23 19:02:38

目录

摘要

Abstract

一、Swin Transformer

1.1 输入

1.2 Patch Partition

1.3  Linear Embedding

1.4 Patch Merging

1.5 Swin Transformer Block

1.6 代码

二、MLP-Mixer

2.1 网络模型整体结构

2.2 Mixer Layer

2.3 MLP

总结


摘要

本篇博客介绍了采用类似于卷积核的移动窗口进行图像特征提取的Swin Transformer网络模型,详细学习了该模型每一个组成模块的网络结构和参数传递过程。博客第二章介绍了不使用卷积和自注意力模块的MLP-Mixer模型,阐述了在全使用全连接的情况下会拥有哪些优势。在每一章的最后都会附上复现的PyTorch代码。

Abstract

This blog introduces the Swin Transformer network model that uses a moving window similar to a convolutional kernel for image feature extraction, and provides a detailed study of the network structure and parameter transfer process of each component module in the model. Chapter 2 of the blog introduced the MLP Mixer model without using convolution and self attention modules, and explained the advantages it would have when fully connected. At the end of each chapter, a reproduced PyTorch code will be attached.

一、Swin Transformer

在上一篇博客中ViT通过将图片打成patch传入Transformer之中,虽然简单直接,但也存在一些问题。ViT是按照语言模型的逻辑去处理图片,对所有patch都做了多头自注意力,但是图片可能不需要将所有信息都注意到,例如图片的左上角和右下角很难出现在同一特征中。这样就会导致一些多余的计算,浪费了资源。

于是Swin Transformer提出了类似CNN卷积核的Shifted Windows(移动窗口),以减少patch之间做自注意力的次数,达到节省时间的目的。

接下来我将参照Swin Transformer模型整体结构图来讲解该模型,网络结构图如下所示:

008c622333c7417db1b786a58faaf712.png

1.1 输入

以输入图像大小为 224x224 为例,将图像tensor 224x224x3 从1处传入模型作为开始。

1.2 Patch Partition

到达第2步Patch Partiton,因为是以Transformer为基础,如同ViT一样需要将图片打成patch传入模型。这里将图像大小 224x224 通过卷积核大小为 4x4,步伐为4的卷积将图像转换为 56x56 的大小,通道数从3变为3x4x4=48维。

1.3  Linear Embedding

接下来数据将传入Swin Transformer最重要的第3大部分,首先在第一个stage会经过全连接层,这里的通道数在论文中是设置好的,即C=96。如上图所示,56x56x48 的tensor经过Linear Embedding维度变化为56x56x96。

1.4 Patch Merging

这里先说一下Patch Merging,因为只要第一个stage先经过Linear Embedding,后3个stage都是Patch Merging。这里的Patch Merging类似于CNN中的池化,为了使窗口获得多尺度的特征,需要在每一个block之前进行下采样,这样在窗口大小不变的情况下图像变小、维度增加,可以获得更多的特征信息。如下图所示:

c5d1b89e995d4cb19eef58efc1d2ce37.png

论文中提到将图像下采样2倍,在Patch Merging中会隔一个点采样。细心的人这时会发现,我们图像的维度从 4x4x1 变为了 2x2x4,但是在模型中是从eq?%5Cfrac%7BH%7D%7B4%7D%5Ctimes%20%5Cfrac%7BW%7D%7B4%7D%5Ctimes%20C变为eq?%5Cfrac%7BH%7D%7B8%7D%5Ctimes%20%5Cfrac%7BW%7D%7B8%7D%5Ctimes%202C,即大小缩小一半,维度扩大2倍。但是在上图的操作中维度扩大了4倍,论文中为了使其与CNN中池化保持一致,在Patch Merging之后会在再通过一次卷积使维度缩小一半,以达到大小缩小一半,维度扩大2倍的效果。

到这一步Swin Transformer已经拥有了感知多尺度特征的手段。

1.5 Swin Transformer Block

50f0feac0e744c549c27db82282f5904.png

接下来看看Swin Transformer中最重要的模块,这里是用到了Transformer中的编码器,但是做了一些改动,Transformer中是单纯的多头自注意力(MSA),而这里用到了W-MSA和SW-MSA。

  • W-MSA

引入Windows Multi-head Self-Attention(窗口多头自注意力)就是为了解决开篇提到的计算量问题。W-MSA会将图像划分为 MxM (在论文中M默认为7)的不重叠窗口,然后多头自注意力只在同一个窗口内做,这样就从全局的自注意力变为了窗口内的自注意力,大大减小了计算量。

eq?O%28MSA%29%3D4hwC%5E%7B2%7D+2%28hw%29%5E%7B2%7DC

eq?O%28W-MSA%29%3D4hwC%5E%7B2%7D+2%28M%29%5E%7B2%7DhwC

如上公式,若图像长宽为 224x224 、M=7,则从eq?224%5E%7B4%7D降为eq?224%5E%7B2%7D%5Ctimes%2049,还是肉眼可见的降低不少。

  • SW-MSA 

如果只进行W-MSA会发现一个问题,窗口之间是没用通信的,也就是窗口与窗口之间是独立计算的,就不能像卷积一样移动去感受不同像素范围。于是,作者引入了Shifted Windows Multi-Head Self-Attention(SW-MSA)模块让窗口移动起来。

e642d53090e74ce5bf65faa2d1038f07.png

例如上图所示,将图像分为了4个窗口,在W-MSA中4个窗口分别做MSA;然后在下一层SW-MSA左上角的窗口会向右和向下移动eq?%5Cfrac%7BM%7D%7B2%7D个步伐。如右图所示将图像分割为9个窗口,会发现上一层不属于同一个窗口的patch,经过移动后融合为一个窗口,窗口与窗口之间成功进行了信息交流。

如果9个窗口分别进行SW-MSA,那么从上一层4个相同的窗口变为9个不完全相同的窗口进行计算,不但不利于并行计算,而且窗口数量也增大两倍多,通过W-MSA积攒的计算优势一去不复返。

那么该如何解决呢?有人想到padding补0,这样虽然可以保证窗口大小相同进行并行计算,但是数量是增多的。论文中,作者提出通过掩码的方式进行自注意力的计算。

2db0d401b34945bdb5a363b19461499e.png

A、B、C经过顺时针循环位移,将图像窗口补为大小相同的4个窗口。但是同一个窗口中,颜色不同的部分不能直接进行自注意力,需要在计算之后分别乘上对应的掩码。 

我的理解如下:

b6d803de2c2f49c8a1c8fdc8ec542800.png

掩码是加上一个很大的负值,在经过softmax之后该部分就会变为0。

1的部分全属于同一窗口可直接进行自注意力计算。

作者也对这部分进行详细的解释,另两个部分的掩码各不相同,但是都是按照上图逻辑计算,我就不一一展开,作者解释如下图所示:

ed3ec7d170234a698a525119d87f275d.png

在完成上述掩码计算之后,还需将循环移动的窗口还原

图像在经过最后一个stage之后大小变为 7x7x768,也就是图像全局特征。该模型在该层之后没有再连接其他操作,因为作者是想把该模型打造成一个万能的模块,可以将这些全局特征应用到各种下游任务。例如,将 7x7x768 送入全连接层输出 1x768,再将 1x768 升维至 1x1000 便可用作ImageNet数据集的分类操作。

在Swin Transformer block之中W-MSA和SW-MSA一般是成对使用,但具体的参数变化和窗口移动按具体任务而定,上述文章主要介绍核心内容。

1.6 代码

代码采用Swin Transformer tiny模型,训练利用迁移学习,模型预训练来自ImageNet-1K数据集,模型参数为1k,窗口大小为 7x7,Swin Transformer block分别为2、2、6、2。

Swin Transformer网络模型如下:

""" Swin Transformer
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`
    - https://arxiv.org/pdf/2103.14030

Code/weights from https://github.com/microsoft/Swin-Transformer

"""

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
import numpy as np
from typing import Optional


def drop_path_f(x, drop_prob: float = 0., training: bool = False):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.

    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path_f(x, self.drop_prob, self.training)


def window_partition(x, window_size: int):
    """
    将feature map按照window_size划分成一个个没有重叠的window
    Args:
        x: (B, H, W, C)
        window_size (int): window size(M)

    Returns:
        windows: (num_windows*B, window_size, window_size, C)
    """
    B, H, W, C = x.shape
    x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
    # permute: [B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H//Mh, W//Mh, Mw, Mw, C]
    # view: [B, H//Mh, W//Mw, Mh, Mw, C] -> [B*num_windows, Mh, Mw, C]
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
    return windows


def window_reverse(windows, window_size: int, H: int, W: int):
    """
    将一个个window还原成一个feature map
    Args:
        windows: (num_windows*B, window_size, window_size, C)
        window_size (int): Window size(M)
        H (int): Height of image
        W (int): Width of image

    Returns:
        x: (B, H, W, C)
    """
    B = int(windows.shape[0] / (H * W / window_size / window_size))
    # view: [B*num_windows, Mh, Mw, C] -> [B, H//Mh, W//Mw, Mh, Mw, C]
    x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
    # permute: [B, H//Mh, W//Mw, Mh, Mw, C] -> [B, H//Mh, Mh, W//Mw, Mw, C]
    # view: [B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H, W, C]
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return x


class PatchEmbed(nn.Module):
    """
    2D Image to Patch Embedding
    """
    def __init__(self, patch_size=4, in_c=3, embed_dim=96, norm_layer=None):
        super().__init__()
        patch_size = (patch_size, patch_size)
        self.patch_size = patch_size
        self.in_chans = in_c
        self.embed_dim = embed_dim
        self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        _, _, H, W = x.shape

        # padding
        # 如果输入图片的H,W不是patch_size的整数倍,需要进行padding
        pad_input = (H % self.patch_size[0] != 0) or (W % self.patch_size[1] != 0)
        if pad_input:
            # to pad the last 3 dimensions,
            # (W_left, W_right, H_top,H_bottom, C_front, C_back)
            x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1],
                          0, self.patch_size[0] - H % self.patch_size[0],
                          0, 0))

        # 下采样patch_size倍
        x = self.proj(x)
        _, _, H, W = x.shape
        # flatten: [B, C, H, W] -> [B, C, HW]
        # transpose: [B, C, HW] -> [B, HW, C]
        x = x.flatten(2).transpose(1, 2)
        x = self.norm(x)
        return x, H, W


class PatchMerging(nn.Module):
    r""" Patch Merging Layer.

    Args:
        dim (int): Number of input channels.
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
        self.norm = norm_layer(4 * dim)

    def forward(self, x, H, W):
        """
        x: B, H*W, C
        """
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        x = x.view(B, H, W, C)

        # padding
        # 如果输入feature map的H,W不是2的整数倍,需要进行padding
        pad_input = (H % 2 == 1) or (W % 2 == 1)
        if pad_input:
            # to pad the last 3 dimensions, starting from the last dimension and moving forward.
            # (C_front, C_back, W_left, W_right, H_top, H_bottom)
            # 注意这里的Tensor通道是[B, H, W, C],所以会和官方文档有些不同
            x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))

        x0 = x[:, 0::2, 0::2, :]  # [B, H/2, W/2, C]
        x1 = x[:, 1::2, 0::2, :]  # [B, H/2, W/2, C]
        x2 = x[:, 0::2, 1::2, :]  # [B, H/2, W/2, C]
        x3 = x[:, 1::2, 1::2, :]  # [B, H/2, W/2, C]
        x = torch.cat([x0, x1, x2, x3], -1)  # [B, H/2, W/2, 4*C]
        x = x.view(B, -1, 4 * C)  # [B, H/2*W/2, 4*C]

        x = self.norm(x)
        x = self.reduction(x)  # [B, H/2*W/2, 2*C]

        return x


class Mlp(nn.Module):
    """ MLP as used in Vision Transformer, MLP-Mixer and related networks
    """
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features

        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.drop1 = nn.Dropout(drop)
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop2 = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x


class WindowAttention(nn.Module):
    r""" Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.

    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # [Mh, Mw]
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # [2*Mh-1 * 2*Mw-1, nH]

        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing="ij"))  # [2, Mh, Mw]
        coords_flatten = torch.flatten(coords, 1)  # [2, Mh*Mw]
        # [2, Mh*Mw, 1] - [2, 1, Mh*Mw]
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # [2, Mh*Mw, Mh*Mw]
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # [Mh*Mw, Mh*Mw, 2]
        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # [Mh*Mw, Mh*Mw]
        self.register_buffer("relative_position_index", relative_position_index)

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        nn.init.trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask: Optional[torch.Tensor] = None):
        """
        Args:
            x: input features with shape of (num_windows*B, Mh*Mw, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        # [batch_size*num_windows, Mh*Mw, total_embed_dim]
        B_, N, C = x.shape
        # qkv(): -> [batch_size*num_windows, Mh*Mw, 3 * total_embed_dim]
        # reshape: -> [batch_size*num_windows, Mh*Mw, 3, num_heads, embed_dim_per_head]
        # permute: -> [3, batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        # [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
        q, k, v = qkv.unbind(0)  # make torchscript happy (cannot use tensor as tuple)

        # transpose: -> [batch_size*num_windows, num_heads, embed_dim_per_head, Mh*Mw]
        # @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, Mh*Mw]
        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        # relative_position_bias_table.view: [Mh*Mw*Mh*Mw,nH] -> [Mh*Mw,Mh*Mw,nH]
        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # [nH, Mh*Mw, Mh*Mw]
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            # mask: [nW, Mh*Mw, Mh*Mw]
            nW = mask.shape[0]  # num_windows
            # attn.view: [batch_size, num_windows, num_heads, Mh*Mw, Mh*Mw]
            # mask.unsqueeze: [1, nW, 1, Mh*Mw, Mh*Mw]
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        # @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
        # transpose: -> [batch_size*num_windows, Mh*Mw, num_heads, embed_dim_per_head]
        # reshape: -> [batch_size*num_windows, Mh*Mw, total_embed_dim]
        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class SwinTransformerBlock(nn.Module):
    r""" Swin Transformer Block.

    Args:
        dim (int): Number of input channels.
        num_heads (int): Number of attention heads.
        window_size (int): Window size.
        shift_size (int): Shift size for SW-MSA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, num_heads, window_size=7, shift_size=0,
                 mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"

        self.norm1 = norm_layer(dim)
        self.attn = WindowAttention(
            dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias,
            attn_drop=attn_drop, proj_drop=drop)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x, attn_mask):
        H, W = self.H, self.W
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        shortcut = x
        x = self.norm1(x)
        x = x.view(B, H, W, C)

        # pad feature maps to multiples of window size
        # 把feature map给pad到window size的整数倍
        pad_l = pad_t = 0
        pad_r = (self.window_size - W % self.window_size) % self.window_size
        pad_b = (self.window_size - H % self.window_size) % self.window_size
        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
        _, Hp, Wp, _ = x.shape

        # cyclic shift
        if self.shift_size > 0:
            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
        else:
            shifted_x = x
            attn_mask = None

        # partition windows
        x_windows = window_partition(shifted_x, self.window_size)  # [nW*B, Mh, Mw, C]
        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # [nW*B, Mh*Mw, C]

        # W-MSA/SW-MSA
        attn_windows = self.attn(x_windows, mask=attn_mask)  # [nW*B, Mh*Mw, C]

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)  # [nW*B, Mh, Mw, C]
        shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)  # [B, H', W', C]

        # reverse cyclic shift
        if self.shift_size > 0:
            x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            x = shifted_x

        if pad_r > 0 or pad_b > 0:
            # 把前面pad的数据移除掉
            x = x[:, :H, :W, :].contiguous()

        x = x.view(B, H * W, C)

        # FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x


class BasicLayer(nn.Module):
    """
    A basic Swin Transformer layer for one stage.

    Args:
        dim (int): Number of input channels.
        depth (int): Number of blocks.
        num_heads (int): Number of attention heads.
        window_size (int): Local window size.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(self, dim, depth, num_heads, window_size,
                 mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
        super().__init__()
        self.dim = dim
        self.depth = depth
        self.window_size = window_size
        self.use_checkpoint = use_checkpoint
        self.shift_size = window_size // 2

        # build blocks
        self.blocks = nn.ModuleList([
            SwinTransformerBlock(
                dim=dim,
                num_heads=num_heads,
                window_size=window_size,
                shift_size=0 if (i % 2 == 0) else self.shift_size,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                drop=drop,
                attn_drop=attn_drop,
                drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                norm_layer=norm_layer)
            for i in range(depth)])

        # patch merging layer
        if downsample is not None:
            self.downsample = downsample(dim=dim, norm_layer=norm_layer)
        else:
            self.downsample = None

    def create_mask(self, x, H, W):
        # calculate attention mask for SW-MSA
        # 保证Hp和Wp是window_size的整数倍
        Hp = int(np.ceil(H / self.window_size)) * self.window_size
        Wp = int(np.ceil(W / self.window_size)) * self.window_size
        # 拥有和feature map一样的通道排列顺序,方便后续window_partition
        img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # [1, Hp, Wp, 1]
        h_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        w_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        cnt = 0
        for h in h_slices:
            for w in w_slices:
                img_mask[:, h, w, :] = cnt
                cnt += 1

        mask_windows = window_partition(img_mask, self.window_size)  # [nW, Mh, Mw, 1]
        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)  # [nW, Mh*Mw]
        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)  # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1]
        # [nW, Mh*Mw, Mh*Mw]
        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
        return attn_mask

    def forward(self, x, H, W):
        attn_mask = self.create_mask(x, H, W)  # [nW, Mh*Mw, Mh*Mw]
        for blk in self.blocks:
            blk.H, blk.W = H, W
            if not torch.jit.is_scripting() and self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x, attn_mask)
            else:
                x = blk(x, attn_mask)
        if self.downsample is not None:
            x = self.downsample(x, H, W)
            H, W = (H + 1) // 2, (W + 1) // 2

        return x, H, W


class SwinTransformer(nn.Module):
    r""" Swin Transformer
        A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -
          https://arxiv.org/pdf/2103.14030

    Args:
        patch_size (int | tuple(int)): Patch size. Default: 4
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        embed_dim (int): Patch embedding dimension. Default: 96
        depths (tuple(int)): Depth of each Swin Transformer layer.
        num_heads (tuple(int)): Number of attention heads in different layers.
        window_size (int): Window size. Default: 7
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        drop_rate (float): Dropout rate. Default: 0
        attn_drop_rate (float): Attention dropout rate. Default: 0
        drop_path_rate (float): Stochastic depth rate. Default: 0.1
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
        patch_norm (bool): If True, add normalization after patch embedding. Default: True
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
    """

    def __init__(self, patch_size=4, in_chans=3, num_classes=1000,
                 embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24),
                 window_size=7, mlp_ratio=4., qkv_bias=True,
                 drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
                 norm_layer=nn.LayerNorm, patch_norm=True,
                 use_checkpoint=False, **kwargs):
        super().__init__()

        self.num_classes = num_classes
        self.num_layers = len(depths)
        self.embed_dim = embed_dim
        self.patch_norm = patch_norm
        # stage4输出特征矩阵的channels
        self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
        self.mlp_ratio = mlp_ratio

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed(
            patch_size=patch_size, in_c=in_chans, embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)
        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule

        # build layers
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            # 注意这里构建的stage和论文图中有些差异
            # 这里的stage不包含该stage的patch_merging层,包含的是下个stage的
            layers = BasicLayer(dim=int(embed_dim * 2 ** i_layer),
                                depth=depths[i_layer],
                                num_heads=num_heads[i_layer],
                                window_size=window_size,
                                mlp_ratio=self.mlp_ratio,
                                qkv_bias=qkv_bias,
                                drop=drop_rate,
                                attn_drop=attn_drop_rate,
                                drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
                                norm_layer=norm_layer,
                                downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
                                use_checkpoint=use_checkpoint)
            self.layers.append(layers)

        self.norm = norm_layer(self.num_features)
        self.avgpool = nn.AdaptiveAvgPool1d(1)
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            nn.init.trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def forward(self, x):
        # x: [B, L, C]
        x, H, W = self.patch_embed(x)
        x = self.pos_drop(x)

        for layer in self.layers:
            x, H, W = layer(x, H, W)

        x = self.norm(x)  # [B, L, C]
        x = self.avgpool(x.transpose(1, 2))  # [B, C, 1]
        x = torch.flatten(x, 1)
        x = self.head(x)
        return x


def swin_tiny_patch4_window7_224(num_classes: int = 1000, **kwargs):
    # trained ImageNet-1K
    # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth
    model = SwinTransformer(in_chans=3,
                            patch_size=4,
                            window_size=7,
                            embed_dim=96,
                            depths=(2, 2, 6, 2),
                            num_heads=(3, 6, 12, 24),
                            num_classes=num_classes,
                            **kwargs)
    return model

引入预训练模型之后,进行花类数据集(上篇博客提到)进行微调,代码如下: 

import os
import argparse

import torch
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms

from my_dataset import MyDataSet
from model import swin_tiny_patch4_window7_224 as create_model
from utils import read_split_data, train_one_epoch, evaluate


def main(args):
    device = torch.device(args.device if torch.cuda.is_available() else "cpu")

    if os.path.exists("../weights") is False:
        os.makedirs("../weights")

    tb_writer = SummaryWriter()

    train_images_path, train_images_label, val_images_path, val_images_label = read_split_data(args.data_path)

    img_size = 224
    data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(img_size),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
        "val": transforms.Compose([transforms.Resize(int(img_size * 1.143)),
                                   transforms.CenterCrop(img_size),
                                   transforms.ToTensor(),
                                   transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}

    # 实例化训练数据集
    train_dataset = MyDataSet(images_path=train_images_path,
                              images_class=train_images_label,
                              transform=data_transform["train"])

    # 实例化验证数据集
    val_dataset = MyDataSet(images_path=val_images_path,
                            images_class=val_images_label,
                            transform=data_transform["val"])

    batch_size = args.batch_size
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
    print('Using {} dataloader workers every process'.format(nw))
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               pin_memory=True,
                                               num_workers=nw,
                                               collate_fn=train_dataset.collate_fn)

    val_loader = torch.utils.data.DataLoader(val_dataset,
                                             batch_size=batch_size,
                                             shuffle=False,
                                             pin_memory=True,
                                             num_workers=nw,
                                             collate_fn=val_dataset.collate_fn)

    model = create_model(num_classes=args.num_classes).to(device)

    if args.weights != "":
        assert os.path.exists(args.weights), "weights file: '{}' not exist.".format(args.weights)
        weights_dict = torch.load(args.weights, map_location=device)["model"]
        # 删除有关分类类别的权重
        for k in list(weights_dict.keys()):
            if "head" in k:
                del weights_dict[k]
        print(model.load_state_dict(weights_dict, strict=False))

    if args.freeze_layers:
        for name, para in model.named_parameters():
            # 除head外,其他权重全部冻结
            if "head" not in name:
                para.requires_grad_(False)
            else:
                print("training {}".format(name))

    pg = [p for p in model.parameters() if p.requires_grad]
    optimizer = optim.AdamW(pg, lr=args.lr, weight_decay=5E-2)

    for epoch in range(args.epochs):
        # train
        train_loss, train_acc = train_one_epoch(model=model,
                                                optimizer=optimizer,
                                                data_loader=train_loader,
                                                device=device,
                                                epoch=epoch)

        # validate
        val_loss, val_acc = evaluate(model=model,
                                     data_loader=val_loader,
                                     device=device,
                                     epoch=epoch)

        tags = ["train_loss", "train_acc", "val_loss", "val_acc", "learning_rate"]
        tb_writer.add_scalar(tags[0], train_loss, epoch)
        tb_writer.add_scalar(tags[1], train_acc, epoch)
        tb_writer.add_scalar(tags[2], val_loss, epoch)
        tb_writer.add_scalar(tags[3], val_acc, epoch)
        tb_writer.add_scalar(tags[4], optimizer.param_groups[0]["lr"], epoch)

        torch.save(model.state_dict(), "../weights/model-{}.pth".format(epoch))


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--num_classes', type=int, default=5)
    parser.add_argument('--epochs', type=int, default=10)
    parser.add_argument('--batch-size', type=int, default=8)
    parser.add_argument('--lr', type=float, default=0.0001)

    # 数据集所在根目录
    # https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz
    parser.add_argument('--data-path', type=str,
                        default="../data/flower_photos")

    # 预训练权重路径,如果不想载入就设置为空字符
    parser.add_argument('--weights', type=str, default='../weights/swin_tiny_patch4_window7_224.pth',
                        help='initial weights path')
    # 是否冻结权重
    parser.add_argument('--freeze-layers', type=bool, default=False)
    parser.add_argument('--device', default='cuda:0', help='device id (i.e. 0 or 0,1 or cpu)')

    opt = parser.parse_args()

    main(opt)

 训练结果如下图所示:

即使迁移学习的模型训练数据集较小,训练和测试结果准确率还是很高的。

模型预测代码如下:

import os
import json

import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt

from model import swin_tiny_patch4_window7_224 as create_model


def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    img_size = 224
    data_transform = transforms.Compose(
        [transforms.Resize(int(img_size * 1.14)),
         transforms.CenterCrop(img_size),
         transforms.ToTensor(),
         transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])

    # load image
    img_path = "../data/Image/flower.png"
    assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
    img = Image.open(img_path)
    plt.imshow(img)
    plt.show()
    img2 = img
    # [N, C, H, W]
    img = img.convert('RGB')
    img = data_transform(img)
    # expand batch dimension
    img = torch.unsqueeze(img, dim=0)

    # read class_indict
    json_path = 'class_indices.json'
    assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)

    with open(json_path, "r") as f:
        class_indict = json.load(f)

    # create model
    model = create_model(num_classes=5).to(device)
    # load model weights
    model_weight_path = "../weights/model-9.pth"
    model.load_state_dict(torch.load(model_weight_path, map_location=device))
    model.eval()
    with torch.no_grad():
        # predict class
        output = torch.squeeze(model(img.to(device))).cpu()
        predict = torch.softmax(output, dim=0)
        predict_cla = torch.argmax(predict).numpy()

    print_res = "class: {}   prob: {:.3}".format(class_indict[str(predict_cla)], predict[predict_cla].numpy())
    plt.title(print_res)
    for i in range(len(predict)):
        print("class: {:10}   prob: {:.3}".format(class_indict[str(i)], predict[i].numpy()))

    plt.imshow(img2)
    plt.show()


if __name__ == '__main__':
    main()

 代码预测结果如下图所示:

大约99.8%的可能性为玫瑰类别。

二、MLP-Mixer

除了通过卷积和自注意力的方式处理图像,还有哪些方法可以实现呢?当然还有万能的全连接,MLP-Mixer采用全连接的方式实现图像分类操作。

全连接层处理图像难道不会导致参数过于庞大?这些问题在算力足够富裕的情况下都不是问题,使用全连接层会有更低的归纳偏置,而且在同准确率的情况下,处理速度会更快,如下图所示:

接下来我们就来看看MLP-Mixer是如何运转的吧!

2.1 网络模型整体结构

如上图所示,MLP-Mixer整体逻辑和ViT类似,但是该模型将ViT中的Transformer Encoder替换为N个Mixer Layer。

同样输入 224x224x3 的图像将其打成49个patch,即每个patch维度为 32x32x3 = 3072;再将 49x3072 的patch传入Per-patch Fully-connected进行降维操作,该层输出为 49x512;再将其传入N层Mixer Layer, Mixer Layer的输入输出维度是相同的;最后将Mixer Layer的输出做一次全局平均池化得到维度大小的向量之后,最后接入全连接层后输出分类概率。

2.2 Mixer Layer

Mixer Layer共进行两次MLP操作:

第一次为channel-mixing,即将每一维进行融合以混合每个位置的特征;

第二次是token-mixing,即将每一个token内部进行自融合,以混合空间信息。

  • MLP1

首先输入张量为 49x512,先经过层归一化后,将其进行转置T变为 512x49,然后对每一个patch(49维)进行MLP操作后,仍得到 512x49 的张量,再转置T回 49x512。

在各层归一化之间都采用残差链接,即Skip-connections。

因为channel-mixing相当于所有patch在通道上连接后,做 1x1 的卷积获取同位置的空间信息,所以MLP-Mixer是CNN的特例

  • MLP2

经过MLP1输出的 49x512 张量先进行层归一化,然后分别对每个patch(512维)进行MLP2操作后,仍输出 49x512 的张量。

可能图片上的标记更好理解:

2.3 MLP

 MLP是两个全连接层之间加一个GELU激活函数。

GELU激活函数:

GULE(x)=0.5\times [1+tanh(\sqrt{\frac{2}{\pi }}(x+0.047715x^{3}))]

因为MLP-Mixer采用全连接的方式,所以无需进行位置编码,因为token之间交换位置所对应的神经元权重不同,所以“语言”也会不同。

2.4 代码

MLP-Mixer网络搭建PyTorch如下所示:

class MlpBlock(nn.Module):
    def __init__(self, in_mlp_dim=196, out_mlp_dim=256):
        super(MlpBlock, self).__init__()
        self.mlp_dim = out_mlp_dim
        self.dense1 = nn.Linear(in_mlp_dim, out_mlp_dim)
        self.gelu = nn.GELU()
        self.dense2 = nn.Linear(out_mlp_dim, in_mlp_dim)

    def forward(self, x):
        y = self.dense1(x)
        y = self.gelu(y)
        y = self.dense2(y)
        return y


class MixerBlock(nn.Module):
    def __init__(self, tokens_mlp_dim=256, channels_mlp_dim=2048, batch_size=32):
        super(MixerBlock, self).__init__()
        self.batch_size = batch_size
        self.norm1 = nn.LayerNorm(512)  # 对512维的做归一化,默认给最后一个维度做归一化
        self.token_Mixing = MlpBlock(out_mlp_dim=tokens_mlp_dim)
        self.norm2 = nn.LayerNorm(512)      # 对512维的做归一化
        self.channel_mixing = MlpBlock(in_mlp_dim=512, out_mlp_dim=channels_mlp_dim)

    def forward(self, x):
        y = self.norm1(x)
        y = y.permute(0, 2, 1)
        y = self.token_Mixing(y)
        y = y.permute(0, 2, 1)
        x = x + y
        y = self.norm2(x)
        return x + self.channel_mixing(y)


class MlpMixer(nn.Module):
    def __init__(self, patches, num_classes, num_blocks, hidden_dim, tokens_mlp_dim, channels_mlp_dim):
        super(MlpMixer, self).__init__()
        self.stem = nn.Conv2d(3, hidden_dim, kernel_size=patches, stride=patches)
        self.mixer_block_1 = MixerBlock()
        self.mixer_blocks = nn.ModuleList([MixerBlock(tokens_mlp_dim, channels_mlp_dim) for _ in range(num_blocks)])
        self.pre_head_norm = nn.LayerNorm(hidden_dim)
        self.head = nn.Linear(hidden_dim, num_classes) if num_classes > 0 else nn.Identity()

    def forward(self, x):
        x = self.stem(x)
        b, c, h, w = x.shape
        x = x.view(b, c, -1).permute(0, 2, 1)
        for mixer_block in self.mixer_blocks:
            x = mixer_block(x)
        x = self.pre_head_norm(x)
        x = x.mean(dim=1)
        x = self.head(x)
        return x


model = MlpMixer(16, 10, 6, 512, 256, 2048)

因为算力不够我这里就没有拿数据去训练。 

 

总结

本周的学习到此结束,目前图像领域仍是Transformer思想为主导的模型霸榜,所以下周将会继续有关Transformer for Vision的学习。

如有错误,请各位大佬指出,谢谢!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2178304.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MySQL篇(leetcode刷题100(查询))(二)(持续更新迭代)

目录 一、普通查询 1. 可回收且低脂的产品&#xff08;简单&#xff09; 1.1. 题目描述 1.2. 解题思路 2. 寻找用户推荐人&#xff08;简单&#xff09; 2.1. 题目描述 2.2. 解题思路 3. 大的国家&#xff08;简单&#xff09; 3.1. 题目描述 3.2. 解题思路 4. 文章浏…

【JavaEE初阶】文件IO(下)

欢迎关注个人主页&#xff1a;逸狼 创造不易&#xff0c;可以点点赞吗~ 如有错误&#xff0c;欢迎指出~ 目录 文件内容操作 打开 关闭文件 文件描述符表 字节流 读文件 写文件 字符流 读文件 写文件 Scanner 示例一:通过scanner读取文件中的数字 示例二:扫描指定⽬录 示例三:实…

JUC第23讲:Java线程池最佳实践

JUC第23讲&#xff1a;Java线程池最佳实践 本文是JUC第23讲&#xff0c;先介绍为什么使用线程池&#xff1b;然后结合实际业务&#xff0c;讲解如何使用线程池&#xff0c;以及使用过程中踩过的坑。 1、Java线程池概述 1.1、什么是线程池&#xff1f; 线程池是一种用于管理和…

彩虹易支付最新版源码及安装教程(修复BUG+新增加订单投诉功能)

该系统也没版本号&#xff0c;此版本目前是比较新的版本&#xff0c;增加了订单投诉功能&#xff0c;和一个好看的二次元模板。 此版本是全开源版&#xff0c;无一处加密文件,系统默认是安装后是打不开的&#xff0c; 本站特别修复了BUG文件&#xff0c;在PHP7.4环境下也没问…

数据结构和算法之树形结构(4)

文章出处&#xff1a;数据结构和算法之树形结构(4) 关注码农爱刷题&#xff0c;看更多技术文章&#xff01;&#xff01;&#xff01; 六、红黑树(接前篇) 红黑树是为了弥补AVL树在大规模频繁增删节点场景下性能不理想而设计出来的一种平衡二叉查找树。红黑树不是一种严…

cuda程序编译流程

cuda程序编译流程 本文以cuda example的matrixMul矩阵乘法为例说明cuda程序的编译流程。 1. 源代码 .cu 文件 在matrixMul示例中&#xff0c;源代码文件 matrixMul.cu 是典型的CUDA程序&#xff0c;包含以下部分&#xff1a; 流程图 主机代码&#xff08;Host Code&#xf…

Vivado - JTAG to AXI Master (GPIO、IIC、HLS_IP)

目录 1. 简介 2. JTAG to AXI Master 2.1 添加 IP Core 2.2 基本TCL命令 2.2.1 复位 JTAG-to-AXI Master 2.2.2 创建并运行写入传输事务 2.2.3 创建并运行读取传输事务 2.2.4 命令列表 2.3 帮助信息 2.4 创建TCL读写程序 2.4.1 Read proc 2.4.2 Write proc 2.4.3 …

嵌入式学习--LinuxDay03

嵌入式学习--LinuxDay03 shell脚本 1.1功能性语句 1.1.1说明性语句 1.1.2功能性语句 1&#xff09;read 2&#xff09;expr 3) test a)字符串 b)整数的测试 c)文件属性的测试 1.2结构性语句 1.2.1if语句 1.2.2case语句 1.2.3for循环 1.2.4while循环 1.2.5循环控制语句 shell脚本…

心觉:运用吸引力法则和开发潜意识的核心中的核心是什么?

吸引力法则的核心在于 思想的力量 和 频率的匹配。你所思考和感受的会吸引与你频率相匹配的事物和经历到你的生活中。具体来说&#xff1a; 明确意图和目标&#xff1a;清晰地知道你想要什么&#xff0c;并且用详细的方式描述它。这可以是通过写下目标、制作愿景板&#xff08;…

rocky9.2实现lvs(DR模式)+keepalived实现高可用的案例详解(双机热备、lvs负载均衡、对后端服务器健康检查)

文章目录 [TOC] 前言lvs(DR模式)的工作原理环境实现过程一、lvs1配置二、lvs2配置web1配置web2配置结果验证 总结 前言 想必能搜到这个也不是来看知识点的&#xff0c;这里就简单描述一下lvs的dr模式的工作原理&#xff0c;其他的就不过多阐述了,直接看操作步骤就好&#xff0…

rabbitMQ 简单使用

安装 rabbitMQ 下载地址&#xff1a;rabbitmq-3.12.0 安装 windows rabbitMQ 需要的命令 进入 rabbitMQ 的 sbin 目录后 cmd &#xff08;需要管理员权限&#xff09; rabbitmq-plugins.bat enable rabbitmq_management随后重启 rabbitMQ #关闭服务 net stop rabbitmq #开…

【机器学习(八)】分类和回归任务-因子分解机(Factorization Machines,FM)算法-Sentosa_DSML社区版

文章目录 一、算法概念二、算法原理&#xff08;一&#xff09; FM表达式&#xff08;二&#xff09;时间复杂度&#xff08;三&#xff09;回归和分类 三、算法优缺点&#xff08;一&#xff09;优点&#xff08;二&#xff09;缺点 四、FM分类任务实现对比&#xff08;一&…

YOLOV8在清微智能芯片的部署与实现(一)

现在以YOLOV8 为例&#xff0c;进行演示 文章目录 1. YOLOV8浮点模型训练1.1 准备数据集1.1.1 下载业务数据集1.1.2 下载开源数据集1.1.3 自定义数据集1.1.4 将数据转换为yolo训练数据格式 1.2 yolov8项目准备1.3 训练模型 2. YOLOV8浮点模型推理2.1 模型推理2.2 模型val.py评…

纯CSS实现有趣emoji切换开关

这是一个纯CSS创建的动画切换开关&#xff0c;它不仅能够在视觉上吸引用户&#xff0c;还能通过交互提供即时反馈。本文将解析源码的核心实现逻辑&#xff0c;这个项目的核心是使用CSS变量、3D变换和过渡效果来实现一个动态的、响应式的用户界面元素。 关键技术点 CSS变量&am…

[Python学习日记-31] Python 中的函数

[Python学习日记-31] Python 中的函数 简介 语法定义 函数的参数 简介 引子&#xff1a; 你是某公司的一个高级程序员&#xff0c;现在老板让你写一个监控程序&#xff0c;需要24小时全年无休的监控公司网站服务器的系统状况&#xff0c;当 CPU、Memory、Disk 等指标的使用…

基于SpringBoot+Vue+MySQL的体育商城系统

系统展示 用户前台界面 管理员后台界面 系统背景 随着互联网的飞速发展&#xff0c;电子商务已成为人们日常生活中不可或缺的一部分。体育用品市场作为其中的一个重要分支&#xff0c;也逐渐向线上转移。基于SpringBootVueMySQL的体育商城系统应运而生&#xff0c;旨在通过构建…

如何使用ssm实现基于Java的高校物业工程报修系统

TOC ssm736基于Java的高校物业工程报修系统jsp 绪论 1.1研究背景与意义 信息化管理模式是将行业中的工作流程由人工服务&#xff0c;逐渐转换为使用计算机技术的信息化管理服务。这种管理模式发展迅速&#xff0c;使用起来非常简单容易&#xff0c;用户甚至不用掌握相关的专…

一行命令将Cmder添加到系统右键菜单中----配置环境

第一步&#xff0c;去官网下载一个简版的文件 ** 第二步&#xff0c;将下载的文件解压后如图&#xff0c;找到Cmder.exe右键以管理员身份运行 第三步&#xff0c;在窗口输入cmder /register all然后回车 第四步&#xff0c;OK!不管在哪里都可以使用了&#xff0c;直接右键即可

vscode环境迁移

关注B站可以观看更多实战教学视频&#xff1a;hallo128的个人空间 vscode环境迁移 Setting 即可打开settings.json {"python.pythonPath": "/Users/apple/opt/anaconda3/bin/python","cmake.cmakePath": "/usr/local/bin/cmake",&qu…

[c++高阶]模版进阶

1.前言 在我们学习c的时候&#xff0c;常常会遇见要使用函数重载的情况。而当使用函数重载时&#xff0c;通常会使得我们编写很多重复的代码&#xff0c;这样就显得非常臃肿&#xff0c;并且效率非常的低下。 重载的函数仅仅只是类型不同&#xff0c;代码的复用率比较低&#x…