【机器学习(八)】分类和回归任务-因子分解机(Factorization Machines,FM)算法-Sentosa_DSML社区版

news2024/11/18 11:22:17

文章目录

  • 一、算法概念
  • 二、算法原理
    • (一) FM表达式
    • (二)时间复杂度
    • (三)回归和分类
  • 三、算法优缺点
    • (一)优点
    • (二)缺点
  • 四、FM分类任务实现对比
    • (一)数据加载和样本分区
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (二)模型训练
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (三)模型评估和模型可视化
      • 1、Python代码
      • 2、Sentosa_DSML社区版
  • 五、FM回归任务实现对比
    • (一)数据加载和样本分区
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (二)模型训练
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (三)模型评估和模型可视化
      • 1、Python代码
      • 2、Sentosa_DSML社区版
  • 六、总结

一、算法概念

  因子分解机(Factorization Machines, FM)是一种基于矩阵分解的机器学习算法,主要解决高维稀疏数据下的特征交互和参数估计问题。FM 通过引入特征组合和隐向量的矩阵分解来提升模型表现,特别适合处理推荐系统等场景中的数据稀疏性和特征交互复杂性。

  FM 可以用于分类和回归任务,是线性模型的扩展,能够高效地捕捉特征之间的交互作用。FM 的核心是通过低维向量的内积表示特征交互,使得其参数数量随维度线性增长,从而降低计算复杂度。
在这里插入图片描述
  FM 的主要特点:
   ∙ \bullet 有监督学习模型,适用于回归和分类任务。
   ∙ \bullet 通过低维向量的内积表示特征交互,模型结构保持线性。
   ∙ \bullet 常用训练方法:随机梯度下降(SGD)、交替最小二乘法(ALS)和马尔可夫链蒙特卡洛(MCMC)。
  FM 模型通过矩阵分解对特征交互建模,并且在处理稀疏数据时有显著优势,常用于推荐系统。

二、算法原理

(一) FM表达式

  为了使系统能够进行预测,它依赖于由用户事件记录生成的可用数据。这些数据是表示兴趣和意图的交易记录,例如:下载、购买、评分。
  对于一个电影评论系统来说,交易数据记录了用户 u ∈ U u \in U uU 在某一时间 t ∈ R t \in R tR 对电影(物品) i ∈ I i \in I iI 给出的评分 r ∈ { 1 , 2 , 3 , 4 , 5 } r \in\{1, 2, 3, 4, 5 \} r{1,2,3,4,5} ,由此产生的数据集可以表示如下:
在这里插入图片描述
  用于预测的数据表示为一个矩阵 X ∈ R m × n X \in\mathbb{R}^{m \times n} XRm×n ,其中包含总共 m m m 个观测值,每个观测值由一个实值特征向量 x ∈ R n x \in\mathbb{R}^{n} xRn 组成。来自上述数据集的特征向量可以表示为:
在这里插入图片描述
  其中, n = ∣ U ∣ + ∣ I ∣ + ∣ T ∣ n=| U |+| I |+| T | n=U+I+T ,即 x ∈ R n x \in\mathbb{R}^{n} xRn 也可以表示为 x ∈ R ∣ U ∣ + ∣ I ∣ + ∣ T ∣ x \in\mathbb{R}^{| U |+| I |+| T |} xRU+I+T ,其中训练数据集的表达式为 D = { ( x ( 1 ) , y ( 1 ) ) , ( x ( 2 ) , y ( 2 ) ) , … , ( x ( m ) , y ( m ) ) } D=\{( x^{( 1 )}, y^{( 1 )} ), ( x^{( 2 )}, y^{( 2 )} ), \ldots, ( x^{( m )}, y^{( m )} ) \} D={(x(1),y(1)),(x(2),y(2)),,(x(m),y(m))} 。训练目标是估计一个函数 y ^ ( x ) : R n → R \hat{y} ( x ) : \mathbb{R}^{n} \to\mathbb{R} y^(x):RnR ,当提供第 i i i x i ∈ R n x_{i} \in\mathbb{R}^{n} xiRn 作为输入时,能够正确预测对应的目标值 y i ∈ R y_{i} \in\mathbb{R} yiR
  FM模型的计算表达式如下所示:
在这里插入图片描述
   < v i , v j > < {\mathbf{v}}_{i}, {\mathbf{v}}_{j} > <vi,vj> 是交叉特征的参数,可以由一组参数定义:
< v i , v j > = w ^ i , j = ∑ f = 1 k v i , f × v j , f < {\mathbf{v}}_{i}, {\mathbf{v}}_{j} >=\hat{w}_{i, j}=\sum_{f=1}^{k} v_{i, f} \times v_{j, f} <vi,vj>=w^i,j=f=1kvi,f×vj,f
  当 k k k 足够大时,对于任意对称正定的实矩阵 W ^ ∈ R n × n \widehat{W} \in\mathbb{R}^{n \times n} W Rn×n ,均存在实矩阵 V   ∈   R n × k V \, \in\, \mathbb{R}^{n \times k} VRn×k ,使得 W ^ = V V ⊤ \widehat{W}=V V^{\top} W =VV成立:
W ^ = [ w ^ 1 , 1 w ^ 1 , 2 ⋯ w ^ 1 , n w ^ 2 , 1 w ^ 2 , 2 ⋯ w ^ 2 , n ⋮ ⋮ ⋱ ⋮ w ^ n , 1 w ^ n , 2 ⋯ w ^ n , n ] = V T V = [ v 1 T v 2 T ⋮ v n T ] [ v 1 v 2 ⋯ v n ] \hat{\mathbf{W}} = \begin{bmatrix} \hat{w}_{1,1} & \hat{w}_{1,2} & \cdots & \hat{w}_{1,n} \\ \hat{w}_{2,1} & \hat{w}_{2,2} & \cdots & \hat{w}_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{w}_{n,1} & \hat{w}_{n,2} & \cdots & \hat{w}_{n,n} \end{bmatrix} = \mathbf{V}^{T} \mathbf{V} = \begin{bmatrix} {\mathbf{v}}_1^{T} \\ {\mathbf{v}}_2^{T} \\ \vdots \\ {\mathbf{v}}_n^{T} \end{bmatrix} \begin{bmatrix} {\mathbf{v}}_1 &{\mathbf{v}}_2 & \cdots & {\mathbf{v}}_n \end{bmatrix} W^= w^1,1w^2,1w^n,1w^1,2w^2,2w^n,2w^1,nw^2,nw^n,n =VTV= v1Tv2TvnT [v1v2vn]
  其中,模型待求解的参数为:
w 0 ∈ R , w ∈ R n , V ∈ R n × k w_{0} \in\mathbb{R}, \quad\mathbf{w} \in\mathbb{R}^{n}, \quad\mathbf{V} \in\mathbb{R}^{n \times k} w0R,wRn,VRn×k
  其中:
   ∙ \bullet w 0 w_{0} w0 表示全局偏差。
   ∙ \bullet w i w_{i} wi 用于捕捉第 i i i 个特征和目标之间的关系。
   ∙ \bullet w ^ i , j \hat{w}_{i, j} w^i,j 用于捕捉 ( i , j ) ( i, j ) (i,j) 二路交叉特征和目标之间的关系。
   ∙ \bullet v i {\mathbf{v}}_{i} vi 代表特征 i i i 的表示向量,它是 V \mathbf{V} V 的第 i i i 列。

(二)时间复杂度

  根据FM模型计算表达式,可以得到模型的计算复杂度如下:
{ n + ( n − 1 ) } + { n ( n − 1 ) 2 [ k + ( k − 1 ) + 2 ] + n ( n − 1 ) 2 − 1 } + 2 = O ( k n 2 ) , \{n+( n-1 ) \}+\left\{\frac{n ( n-1 )} {2} [ k+( k-1 )+2 ]+\frac{n ( n-1 )} {2}-1 \right\}+2={ O} ( k n^{2} ), {n+(n1)}+{2n(n1)[k+(k1)+2]+2n(n1)1}+2=O(kn2),
  通过对交叉项的分解和计算,可以降低时间复杂度为 O ( k n ) { O} ( k n ) O(kn),计算过程如下所示:
在这里插入图片描述
  对于交叉特征,它们的交叉矩阵是一个对称矩阵,这里通过对一个 3x3 对称矩阵的详细分析,展示如何通过减少自交互项和利用对称性来优化计算。最终的结果是简化方程,并且将计算复杂度从二次方降低为线性级别,使模型能够更加高效地处理稀疏数据场景。
  首先,使用一个 3x3 的对称矩阵,图中表达式为计算目标:在这里插入图片描述
  对目标表达式进行展开,展开后对内积进行计算,左式表示 3x3 对称矩阵的一半(对称矩阵的上三角部分)
在这里插入图片描述
  右式表示需要从左式中减去的部分,右式为对称矩阵中自交互的部分,即对角线部分的计算。
在这里插入图片描述
  最终推导,得到:
y ^ ( x ) = w 0 + ∑ i = 1 n w i × x i + 1 2 ∑ f = 1 k ( ( ∑ i = 1 n v i , f × x i ) 2 − ∑ i = 1 n v i , f 2 × x i 2 ) \hat{y} ( {\bf x} )=w_{0}+\sum_{i=1}^{n} w_{i} \times x_{i}+\frac{1} {2} \sum_{f=1}^{k} \left( \left( \sum_{i=1}^{n} v_{i, f} \times x_{i} \right)^{2}-\sum_{i=1}^{n} v_{i, f}^{2} \times x_{i}^{2} \right) y^(x)=w0+i=1nwi×xi+21f=1k (i=1nvi,f×xi)2i=1nvi,f2×xi2
  其计算复杂度为 O ( k n ) { O} ( k n ) O(kn) k { [ n + ( n − 1 ) + 1 ] + [ 3 n + ( n − 1 ) ] + 1 } + ( k − 1 ) + 1 = O ( k n ) k \{[ n+( n-1 )+1 ]+[ 3 n+( n-1 ) ]+1 \}+( k-1 )+1={\cal O} ( k n ) k{[n+(n1)+1]+[3n+(n1)]+1}+(k1)+1=O(kn)

(三)回归和分类

  FM 模型可以用于求解分类问题,也可以用于求解回归问题。在回归任务中,FM 的输出 y ^ ( x ) \hat{y} ( {\bf x} ) y^(x)可以直接作为连续型预测变量。目标是优化回归损失函数,
  最小二乘误差(MSE):最小化预测值与实际值之间的均方误差。损失函数表达式如下所示:
l ( y ^ ( x ) , y ) = ( y ^ ( x ) − y ) 2 l(\hat{y}(x), y) = (\hat{y}(x) - y)^2 l(y^(x),y)=(y^(x)y)2
  对于二分类问题,使用的是Logit或Hinge损失函数:
l ( y ^ ( x ) , y ) = − ln ⁡ σ ( y ^ ( x ) y ) l(\hat{y}(x), y) = -\ln \sigma(\hat{y}(x) y) l(y^(x),y)=lnσ(y^(x)y)
  其中,σ 是Sigmoid(逻辑函数),𝑦∈{−1,1}。在二分类任务中,模型输出的是类别的概率,Sigmoid函数将其转换为0到1之间的概率值,而损失函数则度量预测值与真实分类之间的偏差。FMs 容易出现过拟合问题,因此应用 L2 正则化来防止过拟合。正则化有助于减少模型的复杂性,防止模型在训练数据上过度拟合,从而提升模型在新数据上的泛化能力。
  模型训练好后,就可以利用 y ^ ( x ) \widehat{y} ( \mathbf{x} ) y (x) 的正负符号来预测 x \mathbf{x} x 的分类了。

  最后,FM 模型方程的梯度可以表示如下:
∂ ∂ θ y ^ ( x ) = { 1 , 如果   θ   是   w 0 x i , 如果   θ   是   w i x i ∑ j = 1 n v j f x j − v i f x i 2 , 如果   θ   是   v i , f \frac{\partial}{\partial \theta} \hat{y}(x) = \begin{cases} 1, & \text{如果} \, \theta \, \text{是} \, w_0 \\ x_i, & \text{如果} \, \theta \, \text{是} \, w_i \\ x_i \sum_{j=1}^{n} v_j^f x_j - v_i^f x_i^2, & \text{如果} \, \theta \, \text{是} \, v_{i,f} \end{cases} θy^(x)= 1,xi,xij=1nvjfxjvifxi2,如果θw0如果θwi如果θvi,f
  其中,
   ∙ \bullet 当参数是 w 0 w_{0} w0 时,梯度为常数1。
   ∙ \bullet 当参数是 w i w_{i} wi 时,梯度为 x i x_{i} xi ,即特征 i i i 的值。
   ∙ \bullet 当参数是 v i , f v_{i, f} vi,f 时,梯度更复杂,包含一个交互项 x i ∑ j = 1 n v j f x j x_{i} \sum_{j=1}^{n} v_{j}^{f} x_{j} xij=1nvjfxj 减去一个二次项 v i f x i 2 v_{i}^{f} x_{i}^{2} vifxi2 。这里
v j f v_{j}^{f} vjf 是对应特征 j j j 的因子向量的第 f f f 个元素。
  求和项 ∑ j = 1 n v j f x j \sum_{j=1}^{n} v_{j}^{f} x_{j} j=1nvjfxj i i i 无关,因此可以提前计算。这样,每个梯度都可以在常数时间 O ( 1 ) O ( 1 ) O(1) 内计算出来,而所有参数的更新可以在 O ( k n ) O(kn) O(kn) 或稀疏条件下的 O ( k N z ( x ) ) O(kN_z(x)) O(kNz(x))内完成,其中 k k k是因子维度, n n n是特征数量, N z ( x ) N_z(x) Nz(x)是非零特征的数量。

三、算法优缺点

(一)优点

  1、解决了特征稀疏的问题,能够在非常系数数据的情况下进行预估
  2、解决了特征组合的问题
  3、FM是一个通用模型,适用于大部分场景
  4、线性复杂度,训练速度快

(二)缺点

  虽然考虑了特征的交互,但是表达能力仍然有限,不及深度模型;通过矩阵结构来建模特征之间的二阶交互交互作用,假设所有特征的权重都可以通过隐式支持来串联,但实际上某些特征交互可能比其他特征交互更重要,这种统一的串联有时无法捕捉复杂的交互关系。

四、FM分类任务实现对比

  使用 PySpark 的 FMClassifier 进行分类任务

(一)数据加载和样本分区

1、Python代码

# 创建 Spark 会话
spark = SparkSession.builder \
    .appName("FMClassifierExample") \
    .getOrCreate()

# 加载 Iris 数据集
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
y = iris.target

# 将数据转换为 DataFrame
df = pd.DataFrame(X, columns=iris.feature_names)
df['label'] = y

# 将 pandas DataFrame 转换为 Spark DataFrame
spark_df = spark.createDataFrame(df)

# 将特征列组合成一个单独的特征列
assembler = VectorAssembler(inputCols=iris.feature_names, outputCol="features")
spark_df = assembler.transform(spark_df).select(col("label"), col("features"))

# 划分训练集和测试集
train_df, test_df = spark_df.randomSplit([0.8, 0.2], seed=42)

2、Sentosa_DSML社区版

  首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等),
在这里插入图片描述
  然后,连接行处理中的样本分区算子对数据进行训练集和测试集的划分,比例为8:2,
在这里插入图片描述
  再接类型算子,设置Feature列和Label列。
在这里插入图片描述

(二)模型训练

1、Python代码

from pyspark.sql import SparkSession
from pyspark.ml.classification import FMClassifier

# 创建 FMClassifier 模型
fm = FMClassifier(
    featuresCol="features",
    labelCol="label",
    predictionCol="prediction",
    probabilityCol="probability",
    rawPredictionCol="rawPrediction",
    factorSize=8,
    fitIntercept=True,
    fitLinear=True,
    regParam=0.01,
    miniBatchFraction=1.0,
    initStd=0.01,
    maxIter=100,
    stepSize=0.01,
    tol=1e-06,
    solver="adamW",
    thresholds=[0.5],  # 设置分类阈值
    seed=42
)

# 训练模型
fm_model = fm.fit(train_df)

# 进行预测
predictions = fm_model.transform(test_df)

# 显示预测结果
predictions.select("features", "label", "prediction", "probability").show()

2、Sentosa_DSML社区版

  连接因子分解机分类算子,右侧设置模型参数等信息,点击应用后,右击算子并执行,得到因子分解机分类模型。如下图所示,
在这里插入图片描述
在这里插入图片描述

(三)模型评估和模型可视化

1、Python代码

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns

# 从 PySpark DataFrame 提取预测结果
predictions_df = predictions.select("label", "prediction").toPandas()
y_test_sklearn = predictions_df['label'].values
y_pred_sklearn = predictions_df['prediction'].values

# 评估模型
accuracy = accuracy_score(y_test_sklearn, y_pred_sklearn)
precision = precision_score(y_test_sklearn, y_pred_sklearn, average='weighted')
recall = recall_score(y_test_sklearn, y_pred_sklearn, average='weighted')
f1 = f1_score(y_test_sklearn, y_pred_sklearn, average='weighted')

# 打印评估结果
print(f"FM 模型的准确率: {accuracy:.2f}")
print(f"加权精度 (Weighted Precision): {precision:.2f}")
print(f"加权召回率 (Weighted Recall): {recall:.2f}")
print(f"F1 值 (Weighted F1 Score): {f1:.2f}")

# 计算混淆矩阵
cm = confusion_matrix(y_test_sklearn, y_pred_sklearn)

2、Sentosa_DSML社区版

  模型后可接任意个数据处理算子,比如图表分析算子或数据写出算子,形成算子流执行,也可接评估算子,对模型的分类结果进行评估。如下图所示:在这里插入图片描述
  得到训练集和测试集的评估结果如下:
在这里插入图片描述
在这里插入图片描述
  右击模型,可以查看模型的模型信息,模型信息如下图所示:
在这里插入图片描述在这里插入图片描述

在这里插入图片描述

五、FM回归任务实现对比

  利用python代码,结合 PySpark 和 pandas 处理数据,主要应用了 Spark 的 FMRegressor 进行回归分析。

(一)数据加载和样本分区

1、Python代码

# 读取 winequality 数据集
df = pd.read_csv("D:/sentosa_ML/Sentosa_DSML/mlServer/TestData/winequality.csv")
df = df.dropna()  # 处理缺失值

# 将 pandas DataFrame 转换为 Spark DataFrame
spark_df = spark.createDataFrame(df)

# 将特征列组合成一个单独的特征列
feature_columns = df.columns.tolist()
feature_columns.remove('quality')
assembler = VectorAssembler(inputCols=feature_columns, outputCol="features")
spark_df = assembler.transform(spark_df).select("features", "quality")

# 划分训练集和测试集
train_df, test_df = spark_df.randomSplit([0.8, 0.2], seed=42)

2、Sentosa_DSML社区版

  先读取需要数据集,
在这里插入图片描述
  然后连接样本分区算子对数据集进行训练集和测试集的划分,划分比例为8:2,
在这里插入图片描述
  再接类型算子设置Feature列和Label列(Label列需满足:能转换为Double类型或者就是Double类型)
在这里插入图片描述

(二)模型训练

1、Python代码

# 创建 FMRegressor 模型
fm_regressor = FMRegressor(
    featuresCol="features",
    labelCol="quality",
    predictionCol="prediction",
    factorSize=8,
    fitIntercept=True,
    fitLinear=True,
    regParam=0.01,
    miniBatchFraction=1.0,
    initStd=0.01,
    maxIter=100,
    stepSize=0.01,
    tol=1e-06,
    solver="adamW",
    seed=42
)

# 训练模型
fm_model = fm_regressor.fit(train_df)

# 对测试集进行预测
predictions = fm_model.transform(test_df)

2、Sentosa_DSML社区版

  连接因子分解机回归算子,
在这里插入图片描述
  右击算子,点击运行,得到因子分解机回归模型。如下图所示:
在这里插入图片描述

(三)模型评估和模型可视化

1、Python代码

# 评估模型
evaluator = RegressionEvaluator(
    predictionCol="prediction",
    labelCol="quality",
    metricName="r2"
)
r2 = evaluator.evaluate(predictions)
evaluator_mae = RegressionEvaluator(predictionCol="prediction", labelCol="quality", metricName="mae")
mae = evaluator_mae.evaluate(predictions)
evaluator_mse = RegressionEvaluator(predictionCol="prediction", labelCol="quality", metricName="mse")
mse = evaluator_mse.evaluate(predictions)
rmse = np.sqrt(mse)

# 打印评估结果
print(f"R²: {r2:.4f}")
print(f"MAE: {mae:.4f}")
print(f"MSE: {mse:.4f}")
print(f"RMSE: {rmse:.4f}")

# 将预测值转换为 Pandas DataFrame 以便绘图
predictions_pd = predictions.select("quality", "prediction").toPandas()
y_test = predictions_pd["quality"]
y_pred = predictions_pd["prediction"]

# 绘制实际值与预测值的对比图
plt.figure(figsize=(8, 6))
plt.scatter(y_test, y_pred, color="blue", alpha=0.6)
plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 'r--')
plt.xlabel('Actual Quality')
plt.ylabel('Predicted Quality')
plt.title('Actual vs Predicted Wine Quality')
plt.show()

# 计算残差
residuals = y_test - y_pred

# 使用 Seaborn 绘制带核密度估计的残差直方图
plt.figure(figsize=(8, 6))
sns.histplot(residuals, kde=True, bins=20)
plt.title('Residuals Histogram with KDE')
plt.xlabel('Residuals')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()

2、Sentosa_DSML社区版

  模型后接评估算子,对模型结果进行评估。算子流如下图所示:
在这里插入图片描述
  训练集和测试集的评估结果如下:
在这里插入图片描述
在这里插入图片描述
  右击模型,查看模型的模型信息:
在这里插入图片描述
在这里插入图片描述

六、总结

  相比传统代码方式,利用Sentosa_DSML社区版完成机器学习算法的流程更加高效和自动化,传统方式需要手动编写大量代码来处理数据清洗、特征工程、模型训练与评估,而在Sentosa_DSML社区版中,这些步骤可以通过可视化界面、预构建模块和自动化流程来简化,有效的降低了技术门槛,非专业开发者也能通过拖拽和配置的方式开发应用,减少了对专业开发人员的依赖。
  Sentosa_DSML社区版提供了易于配置的算子流,减少了编写和调试代码的时间,并提升了模型开发和部署的效率,由于应用的结构更清晰,维护和更新变得更加容易,且平台通常会提供版本控制和更新功能,使得应用的持续改进更为便捷。

  为了非商业用途的科研学者、研究人员及开发者提供学习、交流及实践机器学习技术,推出了一款轻量化且完全免费的Sentosa_DSML社区版。以轻量化一键安装、平台免费使用、视频教学和社区论坛服务为主要特点,能够与其他数据科学家和机器学习爱好者交流心得,分享经验和解决问题。文章最后附上官网链接,感兴趣工具的可以直接下载使用

https://sentosa.znv.com/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2178282.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

YOLOV8在清微智能芯片的部署与实现(一)

现在以YOLOV8 为例&#xff0c;进行演示 文章目录 1. YOLOV8浮点模型训练1.1 准备数据集1.1.1 下载业务数据集1.1.2 下载开源数据集1.1.3 自定义数据集1.1.4 将数据转换为yolo训练数据格式 1.2 yolov8项目准备1.3 训练模型 2. YOLOV8浮点模型推理2.1 模型推理2.2 模型val.py评…

纯CSS实现有趣emoji切换开关

这是一个纯CSS创建的动画切换开关&#xff0c;它不仅能够在视觉上吸引用户&#xff0c;还能通过交互提供即时反馈。本文将解析源码的核心实现逻辑&#xff0c;这个项目的核心是使用CSS变量、3D变换和过渡效果来实现一个动态的、响应式的用户界面元素。 关键技术点 CSS变量&am…

[Python学习日记-31] Python 中的函数

[Python学习日记-31] Python 中的函数 简介 语法定义 函数的参数 简介 引子&#xff1a; 你是某公司的一个高级程序员&#xff0c;现在老板让你写一个监控程序&#xff0c;需要24小时全年无休的监控公司网站服务器的系统状况&#xff0c;当 CPU、Memory、Disk 等指标的使用…

基于SpringBoot+Vue+MySQL的体育商城系统

系统展示 用户前台界面 管理员后台界面 系统背景 随着互联网的飞速发展&#xff0c;电子商务已成为人们日常生活中不可或缺的一部分。体育用品市场作为其中的一个重要分支&#xff0c;也逐渐向线上转移。基于SpringBootVueMySQL的体育商城系统应运而生&#xff0c;旨在通过构建…

如何使用ssm实现基于Java的高校物业工程报修系统

TOC ssm736基于Java的高校物业工程报修系统jsp 绪论 1.1研究背景与意义 信息化管理模式是将行业中的工作流程由人工服务&#xff0c;逐渐转换为使用计算机技术的信息化管理服务。这种管理模式发展迅速&#xff0c;使用起来非常简单容易&#xff0c;用户甚至不用掌握相关的专…

一行命令将Cmder添加到系统右键菜单中----配置环境

第一步&#xff0c;去官网下载一个简版的文件 ** 第二步&#xff0c;将下载的文件解压后如图&#xff0c;找到Cmder.exe右键以管理员身份运行 第三步&#xff0c;在窗口输入cmder /register all然后回车 第四步&#xff0c;OK!不管在哪里都可以使用了&#xff0c;直接右键即可

vscode环境迁移

关注B站可以观看更多实战教学视频&#xff1a;hallo128的个人空间 vscode环境迁移 Setting 即可打开settings.json {"python.pythonPath": "/Users/apple/opt/anaconda3/bin/python","cmake.cmakePath": "/usr/local/bin/cmake",&qu…

[c++高阶]模版进阶

1.前言 在我们学习c的时候&#xff0c;常常会遇见要使用函数重载的情况。而当使用函数重载时&#xff0c;通常会使得我们编写很多重复的代码&#xff0c;这样就显得非常臃肿&#xff0c;并且效率非常的低下。 重载的函数仅仅只是类型不同&#xff0c;代码的复用率比较低&#x…

浮点数的这些特性你了解吗

问题1:下面的代码&#xff0c;输出结果是什么&#xff1a; public class CaclTest{public void test1(){float f 1.0F / 0.0F;System.out.println("f:" f)}public static void main(String[] args){CaclTest ct new CaclTest();ct.test1();}} A. 运行抛出异常:j…

7.数据结构与算法-循环链表

如果经常对首位元素进行操作&#xff0c;用尾元素更方便更快捷 两个循环链表合并

信息安全工程师(21)安全协议

前言 安全协议是建立在密码体制基础上的一种交互通信协议&#xff0c;它运用密码算法和协议逻辑来实现认证、密钥分配、数据机密性、完整性和抗否认性等安全目标。 一、定义与目的 安全协议旨在确保网络环境中信息交换的安全性&#xff0c;通过密码技术和协议逻辑来保护数据的机…

第八届蓝桥杯嵌入式省赛程序设计题解析(基于HAL库)

一.题目分析 &#xff08;1&#xff09;.题目 &#xff08;2&#xff09;.题目分析 1.按键功能分析----过程控制 a. 选择按键按下的个数和目标层数&#xff08;每个按键都要在一秒之内按下&#xff0c;否则就结束&#xff09; b. 当升降机到达目标平台&#xff0c;LED灯熄灭 c.…

负载均衡(Load Balancing)是一种计算机技术,用于在网络应用中分配工作负载,以优化资源使用、最大化吞吐量、减少响应时间以及避免过载。

负载均衡&#xff08;Load Balancing&#xff09;是一种计算机技术&#xff0c;用于在网络应用中分配工作负载&#xff0c;以优化资源使用、最大化吞吐量、减少响应时间以及避免过载。通过将任务均匀地分布在多个组件上&#xff0c;如服务器、网络链接、CPU、硬盘等&#xff0c…

【AG 创新工坊】探索存内计算的未来,共话 AGI 时代

目录 ⚛️1. 会议详情 ☪️2. 会议回顾 ♋2.1 多模态时代&#xff0c;存内计算架构的应用与发展 ♏2.2 分布式环境下深度学习任务的高效可靠执行研究 ♐2.3 IGZO在后道单片三维集成中的机遇与挑战 ♑2.4 witin-nn:神经网络算法模型在存内开发板上的应用开发 ♉2.5 茶歇交…

讯飞星火编排创建智能体学习(一)最简单的智能体构建

目录 开篇 智能体的概念 编排创建智能体 创建第一个智能体 ​编辑 大模型节点 测试与调试 开篇 前段时间在华为全联接大会上看到讯飞星火企业级智能体平台的演示&#xff0c;对于拖放的可视化设计非常喜欢&#xff0c;刚开始以为是企业用户才有的&#xff0c;回来之后查…

X86架构(九)——保护模式的进入

全局描述符表 全局描述符表(Global Descriptor Table,GDT)是保护模式下非常重要的一个数据结构。 在保护模式下&#xff0c;对内存的访问仍然使用段地址和偏移地址&#xff0c;在每个段能够访问之前&#xff0c;必须先行设置好 GDT 的地址&#xff0c;并加载全局描述符表寄存…

推荐4款2024年大家都在用的高质量翻译器。

翻译器在我们的生活中有着很重要的作用&#xff0c;不管是我们在学习还是工作&#xff0c;生活娱乐&#xff0c;出国旅游等场合都会派上用场&#xff0c;它是我们解决沟通的障碍&#xff0c;提高阅读效率的好帮手。我自己使用的翻译器有很多&#xff0c;可以给大家列举几款特别…

依赖倒置原则(学习笔记)

抽象不应该依赖细节&#xff0c;细节应该依赖抽象。简单的说就是要求对抽象进行编程&#xff0c;不要对实现进行编程&#xff0c;这样就降低了客户与实现模块间的耦合。 依赖倒转原则是基于这样的设计理念&#xff1a;相对于细节的多变性&#xff0c;抽象的东西要稳定的多。 以…

了解输出电源优先级

主要又SUB&#xff0c;SBU以及USB三种模式。 调试10kW逆变器存在的输出电源优先级的问题&#xff0c;当优先级为SUB时&#xff0c;利用电压源模拟电池&#xff0c;当电池电压超过58.4V&#xff0c;即过压&#xff0c;在接入市电&#xff0c;市电继电器仍然闭合&#xff0c;仍然…

pyboard405意外故障,micropython OLED例程无法运行,折腾了大半天。

thonny报告&#xff1a; Traceback (most recent call last): File "<stdin>", line 3, in <module> RuntimeError: name too mode # main.py -- put your code here! from machine import I2C,Pin #从machine模块导入I2C、Pin子模块 from ss…