助力智能作物植株统计分析,基于YOLOv7全系列【tiny/l/x】参数模型开发构建田间作物场景下智能精准小麦麦穗检测识别计数系统

news2024/11/18 11:18:33

农业实验研究的一些场景下,尝尝有对指定视野区域内作物植株数量进行便捷化智能自动化统计计数的需求,诸如:棉花植株统计、小麦植株统计、水稻植株统计等等,这些农业实验场景下,单纯依靠人工数数的方式来进行植株计数是非常落后且容易出错的方式,以往的计数大都是分散安排给对应的试验研究员,对指定视野区域采取定时固定机位拍照的方式来进行快速记录,等待返回实验室之后再专门打开图像在电脑端进行人工计数统计,随着图像AI智能化模型的发展与应用,越来越多的领域开始尝试接入AI,借助于AI强大的智慧计算能力来为实际的生产赋能,在作物植株计数场景中,我们可以借助于历史已经积累的大量的实验员人工拍摄和标注的图像数据来作为基础支撑,开发训练目标检测模型,借助于检测模型来实现对我们人工拍摄图像的快速智能自动化计算分析,一方面尽可能地降低错误率,借助于大量的高质量标注数据可以训练出来出色的检测计数模型,另一方面可以极大地解放人力,这种低效重复的劳动工作是最适合交给AI模型来完成的。另外模型具备一定的迁移学习能力,我们在一个领域下训练开发的模型可以比较方便地移植到另一个领域下进行微调使用,这样可以大大降低从零进行开发的高成本性。
本文正是基于这样的思考背景下,想要以小麦麦穗数据场景为基准探索实践应用开发构建高质量的目标检测模型,在前文中我们也有一些相关的开发实践,感兴趣的话可以自行移步阅读即可:

《基于YOLOv5[n/s/m/l/x]全系列参数模型开发构建小麦麦穗颗粒智能化精准检测识别计数系统》

《实践体验密集小目标检测,以小麦麦穗颗粒为基准,基于YOLOv7全系列【tiny/l/x】参数模型开发构建智能精准麦穗颗粒检测计数系统》

《实践体验密集小目标检测,以小麦麦穗颗粒为基准,基于YOLOv8全系列【tiny/l/x】参数模型开发构建智能精准麦穗颗粒检测计数系统》

《实践体验密集小目标检测,以小麦麦穗颗粒为基准,基于YOLOv9全系列【yolov9/t/s/m/c/e】参数模型开发构建智能精准麦穗颗粒检测计数系统》

《实践体验密集小目标检测,以小麦麦穗颗粒为基准,基于YOLOv10全系列【n/s/m/b/l/x】参数模型开发构建智能精准麦穗颗粒检测计数系统》

《实践体验密集小目标检测,以小麦麦穗颗粒为基准,基于嵌入式端超轻量级模型LeYOLO全系列【n/s/m/l】参数模型开发构建智能精准麦穗颗粒检测计数系统》

《基于轻量级yolov5n+CBAM开发构建全球小麦麦穗智能检测计数系统》

《基于YOLOv5[n/s/m/l/x]全系列参数模型开发构建小麦麦穗智能化精准检测识别计数系统》

本文则是考虑基于YOLOv7系列的参数模型来进行对应的开发实践,首先看下实例效果:

接下来简单看下数据集:

YOLOv7是 YOLO 系列最新推出的YOLO 结构,在 5 帧/秒到 160 帧/秒范围内,其速度和精度都超过了大部分已知的目标检测器,在 GPU V100 已知的 30 帧/秒以上的实时目标检测器中,YOLOv7 的准确率最高。根据代码运行环境的不同(边缘 GPU、普通 GPU 和云 GPU),YOLOv7 设置了三种基本模型,分别称为 YOLOv7-tiny、YOLOv7和 YOLOv7-W6。相比于 YOLO 系列其他网络 模 型 ,YOLOv7 的 检 测 思 路 与YOLOv4、YOLOv5相似,YOLOv7 网络主要包含了 Input(输入)、Backbone(骨干网络)、Neck(颈部)、Head(头部)这四个部分。首先,图片经过输入部分数据增强等一系列操作进行预处理后,被送入主干网,主干网部分对处理后的图片提取特征;随后,提取到的特征经过 Neck 模块特征融合处理得到大、中、小三种尺寸的特征;最终,融合后的特征被送入检测头,经过检测之后输出得到结果。
YOLOv7 网络模型的主干网部分主要由卷积、E-ELAN 模块、MPConv 模块以及SPPCSPC 模块构建而成 。在 Neck 模块,YOLOv7 与 YOLOv5 网络相同,也采用了传统的 PAFPN 结构。FPN是YoloV7的加强特征提取网络,在主干部分获得的三个有效特征层会在这一部分进行特征融合,特征融合的目的是结合不同尺度的特征信息。在FPN部分,已经获得的有效特征层被用于继续提取特征。在YoloV7里依然使用到了Panet的结构,我们不仅会对特征进行上采样实现特征融合,还会对特征再次进行下采样实现特征融合。Head检测头部分,YOLOv7 选用了表示大、中、小三种目标尺寸的 IDetect 检测头,RepConv模块在训练和推理时结构具有一定的区别。训练数据配置文件如下所示:

# Dataset
path: ./dataset
train:
  - images/train
val:
  - images/test
test:
  - images/test
 
# Classes
names:
  0: wheat

这里主要是选择了yolov7-tiny、yolov7和yolov7x这三款不同参数量级的模型来进行开发训练,最终线上选取的是yolov7模型作为推理模型,这里给出来yolov7的模型文件:

# parameters
nc: 1  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
 
# anchors
anchors:
  - [12,16, 19,36, 40,28]  # P3/8
  - [36,75, 76,55, 72,146]  # P4/16
  - [142,110, 192,243, 459,401]  # P5/32
 
# yolov7 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [32, 3, 1]],  # 0
  
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2      
   [-1, 1, Conv, [64, 3, 1]],
   
   [-1, 1, Conv, [128, 3, 2]],  # 3-P2/4  
   [-1, 1, Conv, [64, 1, 1]],
   [-2, 1, Conv, [64, 1, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]],  # 11
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 16-P3/8  
   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1]],  # 24
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 29-P4/16  
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [1024, 1, 1]],  # 37
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [512, 1, 1]],
   [-3, 1, Conv, [512, 1, 1]],
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 42-P5/32  
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [1024, 1, 1]],  # 50
  ]
 
# yolov7 head
head:
  [[-1, 1, SPPCSPC, [512]], # 51
  
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [37, 1, Conv, [256, 1, 1]], # route backbone P4
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]], # 63
   
   [-1, 1, Conv, [128, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [24, 1, Conv, [128, 1, 1]], # route backbone P3
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1]], # 75
      
   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3, 63], 1, Concat, [1]],
   
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]], # 88
      
   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, -3, 51], 1, Concat, [1]],
   
   [-1, 1, Conv, [512, 1, 1]],
   [-2, 1, Conv, [512, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1]], # 101
   
   [75, 1, RepConv, [256, 3, 1]],
   [88, 1, RepConv, [512, 3, 1]],
   [101, 1, RepConv, [1024, 3, 1]],
 
   [[102,103,104], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)
  ]

如果对YOLOv7开发构建自己的个性化目标检测系统有疑问的可以参考前文的超详细教程:
《YOLOv7基于自己的数据集从零构建模型完整训练、推理计算超详细教程》

在实验阶段保持完全相同的参数设置,等待全部训练完成之后来从多个指标的维度来进行综合的对比分析。

【Precision曲线】
精确率曲线(Precision Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【loss曲线】

在深度学习的训练过程中,loss函数用于衡量模型预测结果与实际标签之间的差异。loss曲线则是通过记录每个epoch(或者迭代步数)的loss值,并将其以图形化的方式展现出来,以便我们更好地理解和分析模型的训练过程。

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

综合实验对比分析结果来看:随着实验训练迭代次数的增加,三款不同参数量级的模型都不断提升精度,yolov7tiny效果略差,其余两款模型最终达到了十分相近的效果,这里综合考虑最终选择使用yolov7模型来作为最终的推理模型。

接下来我们详细看下yolov7模型的结果详情。

【离线推理实例】

【Batch实例】

【混淆矩阵】

【F1值曲线】

【Precision曲线】

【PR曲线】

【Recall曲线】

【训练可视化】

智慧化的统计计数方式会逐渐普及替代原有低效且易错的纯人工检测计数手段,这也是科技发展的趋势,农业作为一个比较传统化且较为落后的行业赛道,有着大有可为的发展空间,我们的系列博客做过很多跟农业相关的内容,一是因为本身就是农村出来的对于农业有着特殊的感情,另外一点事对于农业发展,我们距离现代化有着很大的距离,也是希望,会有越来越多的人和技术能够进入这个赛道发展落地出来能够真正造福农业农民的应用技术。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2172875.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringBoot--yml配置文件的时间/大小的单位转换

原文网址:SpringBoot--yml配置文件的时间/大小的单位转换_IT利刃出鞘的博客-CSDN博客 简介 说明 本文介绍SpringBoot的yml(properties)配置文件的时间/大小的单位转换。 概述 SpringBoot可以将yml中的配置绑定到一个Java类的字段&#x…

论文笔记——Graph Bottlenecked Social Recommendation

文章地址 代码地址 1.1简介 随着社交网络的出现,社交推荐已经成为个性化服务的重要技术。最近,基于图的社交推荐通过捕捉高阶社交影响显示出了有希望的结果。大多数基于图的社交推荐的经验研究直接将观察到的社交网络纳入公式,并基于社交同…

【注册/登录安全分析报告:孔夫子旧书网】

前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 暴力破解密码,造成用户信息泄露短信盗刷的安全问题,影响业务及导致用户投诉带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞…

香港科技大学数据建模MSc(DDM)硕士学位项目25/26招生宣讲会-西安专场

香港科技大学数据建模MSc(DDM)硕士学位项目25/26招生宣讲会-西安专场 🕙时间:2024 年10 月12日(周六) 16:00 🏠地点: 西安交大南洋大酒店(交通大学青龙寺店) 行政会议室 🧑‍🎓嘉宾…

0基础学习PyTorch——GPU上训练和推理

大纲 创建设备训练推理总结 在《Windows Subsystem for Linux——支持cuda能力》一文中,我们让开发环境支持cuda能力。现在我们要基于《0基础学习PyTorch——时尚分类(Fashion MNIST)训练和推理》,将代码修改成支持cuda的训练和推…

[sql-03] 求阅读至少两章的人数

准备数据 CREATE TABLE book_read (bookid varchar(150) NOT NULL COMMENT 书籍ID,username varchar(150) DEFAULT NULL COMMENT 用户名,seq varchar(150) comment 章节ID ) ENGINEInnoDB DEFAULT CHARSETutf8mb4 COMMENT 用户阅读表insert into book_read values(《太子日子》…

MindSearch 部署到Github Codespace 和 Hugging Face Space

和原有的CPU版本相比区别是把internstudio换成了github codespace。 教程是https://github.com/InternLM/Tutorial/blob/camp3/docs/L2/MindSearch/readme_github.md 复现步骤: 根据教材安装环境和创建硅基流动 API 然后启动前后端 然后按照教材部署到 Huggi…

安宝特案例 | 某知名日系汽车制造厂,借助AR实现智慧化转型

案例介绍 在全球制造业加速数字化的背景下,工厂的生产管理与设备维护效率愈发重要。 某知名日系汽车制造厂当前面临着设备的实时监控、故障维护,以及跨地域的管理协作等挑战,由于场地分散和突发状况的不可预知性,传统方式已无法…

计算机的错误计算(一百零六)

摘要 探讨含有变元负的整数次方的多项式的计算精度问题。 计算机的错误计算(一百零五)给出了一个传统多项式的错误计算案例;本节探讨含有变元负的整数次方的多项式的计算精度问题。 例1. 已知 计算 若在Python下计算,则有&…

猎板PCB大讲堂:PCB谐振效应及其对设计的影响

在PCB设计中,谐振效应是一个不可忽视的问题,它可能导致信号完整性问题、电源分配系统(PDS)工作异常,甚至成为EMI辐射源。以下是关于PCB谐振效应的一些详细信息: 1. 谐振产生的原因: - PCB中…

d2l | 目标检测数据集:RuntimeError: No such operator image::read_file

目录 1 存在的问题2 可能的解决方案3 最终的解决方案3.1 方案一(我已弃用)3.2 方案二(基于方案一)3.3 方案三(基于方案一) 1 存在的问题 李沐老师提供的读取香蕉数据集的函数如下: def…

Ubuntu系统设置bond双网卡

这里我的服务器是Ubuntu 22.04.3 LTS,是高阶版本,设置网卡需要通过netplan 根据你的Ubuntu版本(如使用Netplan或/etc/network/interfaces),选择相应的配置方法。 我这边以root用户登录进服务器,就不需要普通用户每次在命令前添加sudo 1.通常/etc/netplan下配置文件名形…

IDEA开发SpringBoot项目基础入门教程。包括Spring Boot简介、IDEA创建相关工程及工程结构介绍、书写配置文件、Bean对象管理等内容

文章目录 0. 关于本文1. 概述1.1 Spring简介1.2 Spring Boot简介1.3 传统的开发方式1.3.1 简述1.3.2 缺点 1.4 Spring Boot的优点 2. 创建一个简单的Spring Boot应用程序2.1 在IDEA创建项目2.2 pom配置文件内容2.3 启动类2.4 创建Controller 3. 从Maven工程创建Spring Boot工程…

数据结构~二叉搜索树

文章目录 一、二叉搜索树的概念二、二叉搜索树的结构二叉搜索树的性能分析二叉搜索树的插入二叉搜索树的查找二叉搜索树的删除 三、二叉搜索树key和key/value使用场景四、二叉搜索树的练习将二叉搜索树就地转化为已排序的双向循环链表从前序与中序遍历序列构造二叉树二叉树的前…

jmeter-请求参数加密-MD5加密

方法1 :使用jmeter自带的函数助手digest Tool(工具)---Function Helper Dialog(函数助手对话框) 第一个参数是要md5加密的值,第二个参数是保存加密后值的变量 ( 此处变量是从txt文件导入的,所以使用的是${wd} ) …

excel统计分析(1):列联表分析与卡方检验

列联表:用于展示两个或多个分类变量之间频数关系的表格。——常用于描述性分析卡方检验:通过实际频数和期望频数(零假设为真情况下的频数),反映了观察频数与期望频数之间的差异程度,来评估两个变量是否独立…

Metasploit渗透测试之服务端漏洞利用

简介 在之前的文章中,我们学习了目标的IP地址,端口,服务,操作系统等信息的收集。信息收集过程中最大的收获是服务器或系统的操作系统信息。这些信息对后续的渗透目标机器非常有用,因为我们可以快速查找系统上运行的服…

System Timer (STM)

文章目录 1. 介绍2. 功能特性3. 应用场景4. 功能介绍4.1 TIME0 ~TIME6计数器精度与定时范围4.2 比较器工作原理4.3 中断处理 5. Ifx Demo5.1 STM_Interrupt_1_KIT_TC277_TFT5.2 STM_System_Time_1_KIT_TC275_LK5.3 SMU_Reset_Alarm_1_KIT_TC275_LK 1. 介绍 Ifx TC37x拥有3个自…

前端大模型入门:使用Transformers.js实现纯网页版RAG(一)

我将使用两篇文章的篇幅,教大家如何实现一个在网页中运行的RAG系统。本文将其前一半功能:深度搜索。 通过这篇文章,你可以了解如何在网页中利用模型实现文本相似度计算、问答匹配功能,所有的推理都在浏览器端本地执行,…

C语言-IO

一,阻塞IO与非阻塞IO 简介: IO的本质是基于操作系统接口来控制底层的硬件之间数据传输,并且在操作系统中实现了多种不同的 IO 方式(模型),比较常见的有下列三种 阻塞型IO模型 非阻塞型IO模型 多路复用IO模型 在 C 语言中&#…