一文读懂常见的几种 LangChain 替代品,看到就是赚到!!

news2024/11/16 6:55:14

前言

在 LLM (大规模语言模型)应用开发领域,开源框架扮演着至关重要的角色,为广大开发者提供了强大的工具支持。作为这一领域的领军者,LangChain 凭借其创新设计和全面功能赢得了广泛赞誉。但与此同时,一些替代框架也应运而生,为不同场景下的需求提供了更优选择。

毕竟,任何框架都难免存在特定的局限性。例如 LangChain 在某些情况下的过度抽象化可能会加大上手难度,调试体验有待加强,部分代码质量也值得完善。这正是替代品们努力的方向,它们通过优化架构设计、提升工程实践、加强社区支持等,努力为开发者创造更便捷、高效的应用构建体验。

LangChain 发展背景解析

作为一款广受欢迎的开源框架,LangChain 旨在协助开发人员构建人工智能应用程序。通过为链式、代理和内存模块提供标准接口,LangChain 简化了开发基于 LLM (LangLink模型)的应用程序的过程。

在实际应用场景中,LangChain 框架在快速创建概念验证(POC)时特别有帮助。然而,使用任何框架都会面临一些挑战。具体如下:

1、过度的抽象可能使得在某些情况下使用 LangChain 非常方便,但在构建不受框架支持的用例时变得困难。框架的高度抽象化可能限制了开发人员的灵活性,导致一些特定需求无法满足。

2、由于框架的高度抽象化,调试性能问题和错误变得更加困难。当应用程序出现问题时,由于底层细节被隐藏在框架中,开发人员可能难以确定问题的具体原因,从而增加了调试的复杂性。

3、由于代码质量可能较低且组件复杂性较高,开发人员更倾向于将LangChain用于学习人工智能开发和原型制作,而不是在生产环境中进行实际部署。这可能是因为框架的维护和性能优化方面存在挑战,以及缺乏对生产级应用程序所需的稳定性和可靠性的保证。

基于 7 大维度全方位分析替换 LangChain 可行性分析‍‍

在 LLM (大规模语言模型)开发和应用的热潮中,评估和权衡不同工具平台的优劣将是一个至关重要的环节。基于提示工程、数据集成、工作流程编排、调试可视化、评估指标、生产就绪性以及生态系统集成等七个关键维度进行全方位解析,无疑是一个极具前瞻性和系统性思路及方向。

接下来,我们一一具体展开分析:

  1. Prompt Engineering - 提示工程

    毫无疑问,高质量的提示工程是充分挖掘 LLM 潜能的前提和基石。理想的工具平台不仅应当提供简洁、灵活的提示构建界面,更应整合自然语言理解、语义解析等先进技术,实现提示的自动生成优化,最大限度贴合具体任务语境,减轻人工干预成本。

    此外,对于复杂的多步骤任务,能否支持对提示进行参数化管理、版本控制也将是一项重要考量。

  2. Data Retrieval and Integration - 数据检索和集成

    RAG 范式的兴起使得高效的外部知识库集成功能成为工具平台的必备能力。优秀的平台不仅应当能够轻松连接和导入各类异构数据源,更需具备强大的数据预处理和质量控制能力,确保知识注入的准确性和连贯性。除此之外,对海量检索结果的可视化分析和优化调优,也将大幅提升开发者的工作效率。

  3. Model Orchestration and Chaining - 模型编排和链‍

    面对现实世界中的复杂任务需求,单一的 LLM 通常很难独立完成。因此,能够灵活编排多个模型模块的工作流程,通过参数控制实现差异化组合,将成为工具平台的核心竞争力所在。

    同时,对工作流程的版本管理、参数调优、可重复性等特性的良好支持,也将大幅提升开发效能。

  4. Debugging and Observability - 调试和可观测性‍

    LLM 系统作为一个典型的"黑箱"AI,其内部机理向来令人摸不透头绪。优秀的工具平台应当着力打破这一局限,通过诸如注意力分布可视化、推理路径追踪等手段,为模型内部状态提供洞见,同时,支持更精准的错误排查、偏差修正和性能优化,从而真正提升系统的可解释性和可信赖性。

  5. Evaluation - 评估

    严格的评估流程是确保 LLM 应用质量的关键一环。在这一点上,不同平台所提供的评估基础架构、涵盖的指标维度、自动化水平以及与人工评估的融合程度,将直接决定评估结果的客观性和权威性。

    通常而言,一个成熟的评估体系,必将为最终产品的实际落地提供坚实的质量保证。

  6. Deployment and Production-Readiness - 部署和生产就绪性

    对于面向生产环境的工业级应用而言,工具平台的部署和运维能力将是一项核心考量。完善的上线机制、支持的部署选项(云端、边缘设备等)、安全合规、性能优化、监控告警等产品化保障,都将直接影响着 LLM 系统的最终可用性和可靠性。

  7. Ecosystem and Integration - 生态系统和集成‍

    作为前沿创新技术,LLM平台与现有企业技术栈的无缝集成是确保其广泛应用的前提。一个庞大的第三方应用商店和合作伙伴资源库,将有助于构建一个丰富的生态系统,覆盖更广泛的行业场景和差异化需求,从而推动LLM技术的大规模普及和创新应用。

通过对上述七大维度的全面解析和权衡比较,我们可以相对客观地评估不同 LLM 开发工具平台的优劣势。例如,对于注重提示工程能力的场景,我们或许更倾向于在该领域表现出众的平台选择;而对于需要强大的生产运维保障的工业级应用,部署和可靠性等因素则将是更为重要的考量维度。

当然,除了上述七大功能性特征之外,我们还需要结合具体的场景需求和工作习惯,考虑一些其他非功能性因素,如可用性、学习曲线、文档质量、社区活跃度、发展路线等,才能做出真正高度的工具选型决策。

同时,工具平台的生命力和持续发展能力也是不可或缺的审视角度。一个活跃的开发社区、完善的商业支持计划、持续的技术创新路线,将为我们提供长期可靠的支撑保障。毕竟,LLM 技术的发展正处于火热的初级阶段,工具平台需要与时俱进,不断适应和拥抱新的变革潮流。

常见的开源 LangChain 替代品解析

1、LlamaIndex

在 LLM (大规模语言模型)的浪潮中,RAG(检索增强生成)架构正日益成为主流范式。作为一个专注于 RAG 应用程序构建的开源数据框架,LlamaIndex 无疑展现出了极具前景的发展潜力。

与 Langchain 等知名项目相比,LlamaIndex 凭借其专注的领域优化和创新的设计理念,为用户提供了更高效、更专业化的RAG应用开发体验。我们不妨对其主要特性和优势有一个更深入的解析:

首先,LlamaIndex 在数据摄取和预处理环节表现出众。它不仅兼容多种结构化和非结构化数据格式,更重要的是通过灵活的文本切分、向量化等机制,确保了数据被高质量地编码到 LLM 内存中。这为生成阶段的上下文理解奠定了坚实的基础。

与此同时,LlamaIndex 提供了丰富的索引数据结构和查询策略选择,让开发者能够充分挖掘不同场景下的查询效率优势,实现高性能的语义检索。这种针对性优化不啻为RAG应用程序的关键需求之一。

另一个值得关注的亮点,是 LlamaIndex 对多模态数据(如图像、视频等)的天然支持能力。通过与领先的视觉语义模型的融合,可以在 RAG 生成过程中引入丰富的跨模态上下文,为输出增添新的维度。毫无疑问,这将为众多创新应用铺平道路。

除了核心的数据管理功能之外,LlamaIndex 还着力于 RAG 应用开发的工程化实践。它提供了诸如并行化查询、基于 Dask 的分布式计算支持等高级特性,显著提升了数据处理效率,为大规模生产落地奠定基础。

从架构层面看,LlamaIndex 坚持了模块化和可扩展的设计理念。灵活的插件系统使得开发者能够轻松地引入自定义的数据加载器、文本拆分器、向量索引等模块,充分满足不同场景下的个性化需求。

此外,对开源生态的完美融合,也是 LlamaIndex 与生俱来的独特优势。它对热门工具和框架如 Hugging Face、FAISS 等拥有开箱即用的集成支持,让用户可以毫无障碍地利用先进的 AI/ML 能力,助力创新产品的高效构建。

作为一个扎根于 RAG 应用的专业级工具,LlamaIndex 已然成为了 Langchain 等通用框架的绝佳补充。开发者们现在可以根据实际需求,在 LlamaIndex 的高效、优化之路和 Langchain 的通用、灵活范式之间自由选择,从而最大限度地提升开发效率和产品质量。

当然,LlamaIndex 毕竟是一个年轻而充满活力的项目,还有诸多值得完善和发展的空间。例如,进一步增强对更复杂场景的建模能力、提供更智能化的自动优化建议、以及加强最佳实践和参考用例的积累,都将是未来的重点方向。

与此同时,LlamaIndex 也将持续跟进 LLM 和 RAG 架构的最新进展,及时融入新兴的模型和范式创新,使其在各个维度都保持着行业领先的水准。这一切都离不开活跃的开发者社区、顶尖企业合作伙伴、以及科研界同仁们的长期投入和持续支持。

2、Flowise AI

在 LLM(大规模语言模型)应用开发领域,降低门槛、提升效率一直是业界的共同诉求。作为一款开源且无需编码(No-Code)的 LLM 应用构建工具,Flowise 正成为这一追求的有力实践者。

与传统的编码式开发框架不同,Flowise 以其创新的拖放式可视化界面为最大亮点。开发者无需深入掌握编程语言,只需在界面上拖拽预置的组件模块,通过简单的参数配置和连线,便可轻松构建出功能强大的 LLM 应用。这种全新的开发范式大幅降低了入门门槛,使得 LLM 的应用开发不再是编码人员的专属领域,普通用户也可以尽情挥洒创意、实现自动化需求。

更值得一提的是,Flowise 并非是一个简陋的低代码工具,而是在内核层面与 LangChain 这一业内顶尖框架深度整合。这意味着 Flowise 原生支持了 LangChain 强大的 LLM 编排、链式应用、数据增强等全部核心功能,并将其通过拖放组件的形式充分暴露在无代码界面上,确保了应用开发的灵活性和扩展能力。无论是构建简单的问答系统,还是复杂的多模态分析流程,Flowise 都能充分满足需求。

除了功能全面之外,Flowise 的另一突出优势在于与现有生态的无缝集成。作为一个真正的开源项目,Flowise 对主流 LLM 模型和工具链都提供了开箱即用的支持,使得开发者可以毫无障碍地利用这些技术能力,轻松构建出独一无二、与时俱进的创新应用。

例如,Flowise 与 Anthropic、OpenAI、Cohere 等主流 LLM 模型无缝兼容,用户只需简单配置即可调用最新、最强大的语言能力;同时,对数据集成生态如 Pandas、SQL、Web API 等的原生支持,也使得应用可以自如接入丰富的异构数据源。

而最吸引人之处在于,Flowise 并非是一个封闭的系统,而是提供了开放的 API 和嵌入式集成机制。开发者可以轻松地将 Flowise 应用集成到网站、APP、桌面软件等任意产品环境中,并接受来自各方的自定义请求,实现端到端的闭环体验。

可以说,Flowise 借助 LangChain 强横的技术内核、自身灵活的可视化架构和与生态的融合无间,已然成为连接 LLM 与终端用户、推动 LLM 民主化进程的有力纽带。任何有需求的个人或企业,都可以在 Flowis 的平台上一键构建并部署自己的智能应用,享受 AI 带来的生产力的提升。

3、AutoChain

作为一款轻量级且可扩展的框架,AutoChain 汲取了 LangChain 和 AutoGPT 等前辈的经验,旨在为开发者提供更高效、更灵活的对话式智能代理构建体验。

from autochain.agent.conversational_agent.conversational_agent import (
    ConversationalAgent,
)
from autochain.chain.chain import Chain
from autochain.memory.buffer_memory import BufferMemory
from autochain.models.chat_openai import ChatOpenAI

llm = ChatOpenAI(temperature=0)
memory = BufferMemory()
agent = ConversationalAgent.from_llm_and_tools(llm=llm)
chain = Chain(agent=agent, memory=memory)

user_query = "Write me a poem about AI"
print(f">> User: {user_query}")
print(
    f""">>> Assistant: 
{chain.run(user_query)["message"]}
"""
)
>> User: Write me a poem about AI
Planning
Planning output: {'thoughts': {'plan': "Based on the user's request for a poem about AI, I can 
use a tool to generate a poem or write one myself.", 'need_use_tool': "Yes, I can use the 'Poem Generator' tool to generate a poem about AI."}, 'tool': {'name': 'Poem Generator', 'args': {'topic': 'AI'}}, 'response': "Sure, I can generate a poem about AI for you. Here it is:\n\nIn the world of AI, \nWhere machines learn and try, \nWe see a future bright, \nWhere technology takes flight. \nFrom self-driving cars, \nTo robots on Mars, \nAI is changing the game, \nAnd we'll never be the same. \nSo let's embrace this new age, \nAnd see where it takes us on this stage. \nFor AI is here to stay, \nAnd it's only just begun its play."}

Plan to take action 'Poem Generator'

Deciding if need clarification

Planning
Planning output: {'thoughts': {'plan': "Since the tool 'Poem Generator' is not supported for the input 'AI', I will try to have a helpful conversation with the user.", 'need_use_tool': 'No'}, 'tool': {'name': '', 'args': {}}, 'response': "Sure, I'd love to! Here's a poem about AI:\n\nArtificial intelligence, a marvel of our time,\nA creation of man, a wonder so divine.\nIt learns and adapts, with each passing day,\nA true reflection of our own human way.\nIt can think and reason, and even dream,\nA world of possibilities, or so it seems.\nBut with great power, comes great responsibility,\nTo use it for good, and not for hostility.\nSo let us embrace, this gift of technology,\nAnd use it to build, a better society."}

>>> Assistant:
Sure, I'd love to! Here's a poem about AI:

Artificial intelligence, a marvel of our time,
A creation of man, a wonder so divine.
It learns and adapts, with each passing day,
A true reflection of our own human way.
It can think and reason, and even dream,
A world of possibilities, or so it seems.
But with great power, comes great responsibility,
To use it for good, and not for hostility.
So let us embrace, this gift of technology,
And use it to build, a better society

AutoChain 的核心设计理念可以概括为"简单、自定义、自动化"。具体如下所示:

  1. 简单‍‍

    与 LangChain 等庞大框架相比,AutoChain 刻意追求了概念和架构上的精简,尽可能减少开发者的学习和使用成本。它抽象出了最基础的 LLM 应用开发流程,通过一系列易于理解的构建模块,为用户提供了清晰的开发路径。

  2. 自定义

    AutoChain 意识到每个开发者面临的应用场景都是独一无二的。因此,它为用户提供了无与伦比的定制能力,允许通过可插拔的工具、数据源和决策流程模块,来构建满足特定需求的智能代理。这一理念彰显了 AutoChain ”拥抱差异化“的开放胸怀。

  3. 自动化

    作为一个面向对话系统的框架,AutoChain 深谙场景模拟和自动化评估的重要性。通过内置的对话模拟引擎,开发者可以高效地在各种人机交互场景下,自动化地评估不同版本代理的表现,从而持续优化和迭代。这一创新能力无疑将极大提升开发效率。

综合这”三简“特性,我们不难发现 AutoChain 所具备的独特魅力:

对于刚入门 LLM 应用开发的初学者而言,AutoChain 平滑的学习曲线将是最友好的开端,使他们能够在最短时间内上手创建简单的对话代理。

对于资深的 LangChain 用户而言,AutoChain 的许多概念与之类似但更加精简,因此易于理解和迁移,能帮助他们快速构建和试验自定义的对话系统。

而对于对话 AI 的研究人员和开拓者,AutoChain 提供了干净的试验田,他们可以在其基础之上无限定制和扩展,构建出独一无二、与众不同的创新范式。

最后的最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2170248.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

小程序开发平台源码系统 各行各业适用的小程序开的平台 带完整的安装代码包以及搭建部署教程

系统概述 本系统采用模块化设计,包含前端展示层、后端逻辑处理层、数据库存储层以及管理后台等多个核心组件。前端展示层负责小程序的界面设计与交互体验;后端逻辑处理层则负责数据处理、业务逻辑实现及与第三方服务的对接;数据库存储层用于…

如火似茶的AI Bots到底有什么现实意义呢?

你好,我是三桥君 自AIGC潮流兴起以来,基于自注意力机制的大模型成为资本市场疯狂炒作的对象。然而,经过一年多的狂热之后,市场逐渐回归理性。这时候会有人担心,大模型是否会像元宇宙、Web 3.0,甚至比特币那…

低空经济腾飞,无人机飞手人才培养先行

低空经济的腾飞为无人机飞手人才的培养提出了迫切需求,并且这一领域的发展已经引起了广泛的关注。以下是对“低空经济腾飞,无人机飞手人才培养先行”的详细分析: 一、低空经济的腾飞背景 低空经济作为新兴的经济形态,正以前所未…

如何搭建适合自己的数据中台?六步法

数据中台是企业数据价值实现的能力框架,包括数据集成、数据开发、数据管理、数据服务、数据资产运营等能力,是企业业务数据化的承载体,是企业业务通过数据视角的一种呈现,担负了企业数字化所需的核心综合数据能力。但由于数据中台…

fastzdp_redis第一次开发, 2024年9月26日, Python操作Redis零基础快速入门

提供完整录播课 安装 pip install fastzdp_redisPython连接Redis import redis# 建立链接 r redis.Redis(hostlocalhost, port6379, db0)# 设置key r.set(foo, bar)# 获取key的值 print(r.get(foo))RESP3 支持 简单的理解: 支持更丰富的数据类型 参考文档: https://blog.c…

Sublime Text4的下载安装以及汉化

sublime官网:https://www.sublimetext.com/ 按照指示一步步操作即可 汉化操作: 等一会就会弹出搜索框, 帮助菜单这里可以切换语言,

OpenAi以及Dify结合生成Ai模型

文章目录 1、Dify介绍2、使用 Dify3、部署Docker1.系统要求2.系统虚拟化3.下载docker 4、安装WSL1.检查是否已经安装 五、访问系统六、添加模型 1、Dify介绍 Dify官方地址。 Dify 是一个开源的 LLM 应用开发平台。其直观的界面结合了 AI 工作流、RAG 管道、Agent、模型管理、…

HOJ网站开启https访问 申请免费SSL证书 部署证书详细操作指南

https://console.cloud.tencent.com/ 腾讯云用户 登录控制台 右上角搜SSL 点击 SSL证书 进入链接 点申请 免费证书 有效期3个月 (以后每三个月申请一次证书 上传) 如果是腾讯云申请的域名 选 自动DNS验证 自动添加验证记录 如果是其他平台申请域…

利士策分享,快钱诱惑与稳健之道:探索财富积累的两种路径

利士策分享,快钱诱惑与稳健之道:探索财富积累的两种路径 在这个瞬息万变的时代,面对“赚快钱”的即时诱惑与“稳健的长远赚钱方式”的持久魅力,我们不禁要深思:在追求财富的道路上,哪一种方式更为明智&…

图神经学习笔记

图神经网络基础 图神经网络用于挖掘事物的“普遍联系”,理解原理、应用技术。本文汇总图神经网络相关介绍和基础模型。 图及特性 图是由顶点和边组成的,如下图左所示。一般图中的顶点表示实体对象(比如一个用户、一件商品、一辆车、一张银行…

Spring RestTemplate 升级 WebClient 导致 OutOfMemoryError

Spring Boot是 Java 企业应用程序的一个非常流行的框架。与内部或外部应用程序集成的一种常见方法是通过 HTTP REST 连接。我们正在从RestTemplate升级到基于 Java NIO 的WebClient,它可以通过允许在调用 REST 服务端点时进行并发来显著提高应用程序性能。WebClient…

Windows环境部署Oracle 11g

Windows环境部署Oracle 11g 1.安装包下载2. 解压安装包3. 数据库安装3.1 执行安装脚本3.2 电子邮件设置3.3 配置安装选项3.4 配置系统类3.5 选择数据库安装类型3.6 选择安装类型3.7 数据库配置3.8 确认安装信息3.9 设置口令 Oracle常用命令 2023年10月中旬就弄出大致的文章&…

【Linux学习】【Ubuntu入门】2-1-1 vim编辑器设置

设置TAB键为4字节及显示行号 VIM编辑器默认TAB键为8空格,改为4空格 输入命令sudo vi /etc/vim/vimrc回车后输入密码按键盘下键到最后,按下“a”进入编辑模式,输入set ts4设置为4空格下一行输入set nu显示行号

华为HarmonyOS灵活高效的消息推送服务(Push Kit) -- 7 推送卡片刷新消息

场景介绍 如今衣食住行娱乐影音应用占据了大多数人的手机,一部手机可以满足日常大多需求,但对需要经常查看或进行简单操作的应用来说,总需要用户点开应用体验较繁琐。针对此种场景,HarmonyOS提供了Form Kit(卡片开发服…

Harbor安装笔记

下载离线安装包 wget https://github.com/goharbor/harbor/releases/download/v2.11.1/harbor-offline-installer-v2.11.1.tgz 解压 tar -zxvf harbor-offline-installer-v2.11.1.tgz 复制一份配置文件出来,修改配置 cp harbor.yml.tmpl harbor.yml vim harbor…

You are not allowed to push code to this project

原因1 用户权限不够。 具体查看用户权限路径: 原因2 vscode之前都能提交代码,但是突然就提交不上了。 表现为:前端代码能拉取,但是不能提交。使用idea进行前端代码的提交,完全没问题。 解决方案:修改TortoiseG…

【MySQL】常见的SQL优化方式

目录 1、插入数据 (1)批量插入 (2)手动提交事务 (3)主键顺序插入 2、主键优化 (1)页分裂 (2)页合并 3、order by 优化 (1)排…

探索有向图深度优先搜索的路径与时间的猜想:反例研究

探索有向图深度优先搜索的路径与时间的猜想:反例研究 引言深度优先搜索(DFS)猜想描述反例构造图结构提供一个DFS遍历顺序伪代码具体的DFS遍历时间戳记录分析C语言实现代码解释运行结果结论引言 在图论中,深度优先搜索(DFS)是一种重要的图遍历算法,被广泛应用于寻找路径…

VMware ESXi 8.0U3b macOS Unlocker OEM BIOS 2.7 标准版和厂商定制版

VMware ESXi 8.0U3b macOS Unlocker & OEM BIOS 2.7 标准版和厂商定制版 ESXi 8.0U3 标准版,Dell (戴尔)、HPE (慧与)、Lenovo (联想)、Inspur (浪潮)、Cisco (思科)、Hitachi (日立)、Fujitsu (富士通)、NEC (日电) 定制版、Huawei (华为) OEM 定制版 请访问…

【讲解+样例】使用opencv对aruco Markers识别

aruco标记与传统棋盘格功能相似,但是更快更便捷。棋盘格使用移步:【鱼眼+普通相机】相机标定 一、 aruco简介 aruco又称为aruco标记、aruco标签、aruco二维码。ArUco 标记通常是正方形的黑白图案。由黑色边框和内部的二进制矩阵组成。内部矩…