>- **🍨 本文为[🔗365天深度学习训练营](小团体~第八波) 中的学习记录博客**
>- **🍖 原作者:[K同学啊](K同学啊-CSDN博客)**
目录
前言
一、.xml文件里保存的是什么
二、准备好自己的数据
三、创建split_train_val.py 文件,运行并生成 train.txt、test.txt、val.txt
(1)在yolov5-master工程内,新建一个.py文件,并命名为split_train_val.py:
(2)将以下代码写入该文件,设置自己的.xml和.txt文件路径:
(3)然后执行该文件,就得到下面的结果:
(4)创建voc_label.py,填充图片路径
四、创建 fruit.yaml 文件
五、开始用自己的数据集训练模型
(1) 输入训练指令
六六六、终于到总结了
前言
其实在YOLOv5白皮书-第Y1周:调用官方权重进行检测这一篇章中,我应该介绍一些基础概念的,不然即使是调用官方的权重,大家也看不懂,所以,这次,结合自己的数据集,我一次给大家讲清楚。
本文使用的是Pytorch深度学习环境。数据集百度网盘链接如下:水果检测数据集
一、.xml文件里保存的是什么
在yolov5-master/Fruit_dect/annotations文件夹里,打开任意一个.xml
文件,这里打开fruit0.xml
,文件内容如下:
注意每个标签组内的信息,后续voc_label.py
文件会提取这些信息。
<annotation>
<folder>images</folder>
<filename>fruit0.png</filename>
<size>
<width>400</width>
<height>300</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>pineapple</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<occluded>0</occluded>
<difficult>0</difficult>
<bndbox>
<xmin>38</xmin>
<ymin>82</ymin>
<xmax>271</xmax>
<ymax>227</ymax>
</bndbox>
</object>
<object>
<name>snake fruit</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<occluded>0</occluded>
<difficult>0</difficult>
<bndbox>
<xmin>244</xmin>
<ymin>174</ymin>
<xmax>280</xmax>
<ymax>207</ymax>
</bndbox>
</object>
<object>
<name>dragon fruit</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<occluded>0</occluded>
<difficult>0</difficult>
<bndbox>
<xmin>254</xmin>
<ymin>228</ymin>
<xmax>351</xmax>
<ymax>300</ymax>
</bndbox>
</object>
</annotation>
你看看,到了这里,很多小伙伴肯定不知道是什么是xml文件了,那么这里我就要和你解释一下。
yolo系列中呢,有3种数据集格式。
如上图可见,其中一种格式就是xml文件,这个时候对照一下自己的数据集,也就是我们的水果数据集是什么格式的
发现什么了,是的,数据集中有两种格式,一种png(图片路径),一种的xml(标签路径),注意每个标签组内的信息,后续voc_label.py
文件会提取这些信息。。
链接如下:
百度AI-YOLO目标检测数据集指南:标签格式、划分与训练全攻略
目标检测YOLO数据集的三种格式及转换
二、准备好自己的数据
本次使用水果数据集,数据集包含200张图片,每张图片包含4种不同类别的水果:Banana、Snake fruit、Dragon fruit和Pineapple
。
三、创建split_train_val.py 文件,运行并生成 train.txt、test.txt、val.txt
执行split_train_val.py
前的文件结构:
(1)在yolov5-master工程内,新建一个.py文件,并命名为split_train_val.py
:
(2)将以下代码写入该文件,设置自己的.xml
和.txt
文件路径:
# 导入必要的库
# 导入必要的库
import os
import random
import argparse
# 创建一个参数解析器
parser = argparse.ArgumentParser()
# 添加命令行参数,用于指定XML文件的路径,默认为“Annotations”文件夹
parser.add_argument('--xml_path', default='Fruit_dect/annotations/', type=str, help='input xml label path')
# 添加命令行参数,用于指定txt标签文件的路径,默认为“ImageSets/Main”文件夹
parser.add_argument('--txt_path', default='Fruit_dect/ImageSets/Main/', type=str, help='output txt label path')
# 解析命令行参数opt = parser.parse_args()
args = parser.parse_args(args=[])
opt =args
# 定义训练验证和测试集的划分比例
trainval_percent = 1.0 # 使用全部数据
train_percent = 0.9 # 训练集占验证集的90%
# 设置xml文件的路径,并根据命令行参数指定
xmlfilepath = opt.xml_path
print("xmlfilepath: ", xmlfilepath)
# 设置txt文件的路径,并根据命令行参数指定
txtfilepath = opt.txt_path
# 获取xml文件夹中的所有xml文件列表
total_xml = os.listdir(xmlfilepath)
# 如果输出txt标签文件的文件夹不存在,创建它
if not os.path.exists(txtfilepath):
os.makedirs(txtfilepath)
# 获取xml文件的总数
num = len(total_xml)
# 创建一个包含所有xml文件索引的列表
list_index = range(num)
# 计算训练验证集的数量
tv = int(num*trainval_percent)
# 计算训练集的数量
tr = int(num*train_percent)
# 从所有xml文件索引中随机选择出训练验证集的索引
trainval = random.sample(list_index, tv)
# 从训练验证集的索引中随机选择出训练集的索引
train = random.sample(list_index, tr)
# 打开要写入的训练验证集、测试集、训练集、验证集的txt文件
file_trainval = open(txtfilepath + '/trainval.txt', 'w')
file_test = open(txtfilepath + '/test.txt', 'w')
file_train = open(txtfilepath + '/train.txt', 'w')
file_val = open(txtfilepath + '/val.txt', 'w')
# 遍历所有xml文件的索引
for i in list_index:
name = total_xml[i][:-4] + '\n' # 获取所有文件的名称(去掉后缀.xml),并添加换行符
# 如果该索引在训练验证集中, 写入训练验证集txt文件,否则写入测试集txt文件
if i in trainval:
file_trainval.write(name) #
if i in train: # 如果该索引在训练集中, 写入训练集txt文件,否则写入验证集txt文件
file_train.write(name)
else:
file_val.write(name)
else:
file_test.write(name)
# 关闭所有打开的文件
file_trainval.close()
file_train.close()
file_val.close()
file_test.close()
(3)然后执行该文件,就得到下面的结果:
打开任意一个文件,查看内容:【此处打开val.txt
,文件内保存的是个文件名】
(4)创建voc_label.py
,填充图片路径
voc_label.py位置如下
voc_label.py
代码如下:
import xml.etree.ElementTree as ET
import os
from os import getcwd
# 定义数据集的名称
sets = ['train', 'val', 'test']
# 根据所用数据集,填写类别名称
classes = ["banana", "snake fruit", "dragon fruit", "pineapple"]
# 获取当前工作目录的绝对路径
abs_path = getcwd()
print("abs_path: ", abs_path)
# 定义一个函数,将边界框的坐标绝对值转换为相对于图像大小的比例
def convert(size, box):
dw = 1./(size[0])
dh = 1./(size[1])
x = (box[0] + box[1]) / 2.0 - 1
y = (box[2] + box[3]) / 2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return x, y, w, h
# 定义一个函数,将标注文件从xml格式转为YOLO格式
def convert_annotations(image_id, annotations_dir, labels_dir):
in_file = open(os.path.join(annotations_dir, "%s.xml" % image_id), encoding='UTF-8')
out_file = open(os.path.join(labels_dir, "%s.txt" % image_id), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
filename = root.find('filename').text
filenameFormat = filename.split(".")[1]
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text),
float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
if b[1] > w:
b[1] = w
if b[3] > h:
b[3] = h
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + "\n")
return filenameFormat
# 指定 annotations 和 labels 目录的路径
annotations_dir = './annotations'
labels_dir = './labels'
# 遍历每个数据集(train、val、test)
for image_set in sets:
if not os.path.exists(labels_dir):
os.makedirs(labels_dir)
image_ids = open(os.path.join('./ImageSets/Main', '%s.txt' % image_set)).read().strip().split()
list_file = open(os.path.join('./', '%s.txt' % image_set), 'w')
for image_id in image_ids:
filenameFormat = convert_annotations(image_id, annotations_dir, labels_dir)
if filenameFormat:
list_file.write(os.path.join(abs_path, 'images', '%s.%s\n' % (image_id, filenameFormat)))
list_file.close()
jupyter中的路径问题始终是大事
新的问题出现了,为什么txt文件是空的呢 ?答案:重启内核重新弄就好了,因为有一些代码是在pycharm中运行的,不适配。需要改一改。
执行后得到结果:
四、创建 fruit.yaml
文件
新建fruit.yaml
文件:这个文件名是我随意取的,这个可以做出改变的,fruit.yaml 文件的位置如下:这样方便统一管理,当然了,这都无所谓的,只要最后训练的时候,代码路径不出错就好了
内容如下 文件位置我换了 这个无所谓的
五、开始用自己的数据集训练模型
终端执行(有GPU):python ./train.py --img 900 --batch 16 --epoch 100 --data ./Fruit_test/fruit.yaml --cfg ./models/Fruit_test.yaml --weights ./yolov5s.pt --device '0'
执行命令后,出现如下提示,表明训练进行中,等待训练完成,查看训练结果。
如图中所示,使用YOLO-v5s训练本文的数据集:
a. 100个epoch需要的时间是3.382小时
b. YOLOv5s 网络结构: 157 层, 参数量是7020913 , 梯度是0 , GFLOPs是15.8
c. 还显示了类别的训练结果,包括P-R值、mAP50的值
d. 训练结果保存在runs\train\exp7,在该路径下生成了许多文件:
打开其中一张图片,如val_batch1_labels.jpg
,如下图,显示了各水果的标签:
打开val_batch1_labels.jpg
,则显示了带预测值的标签:
六六六、终于到总结了
其实想说的有很多,收获也很大,踩了很多的坑,主要是代码不熟悉,路径总错,我使用的云服务器上的jupyter,所以一些路径的问题就需要注意。这次需要注意的点有三个
1、数据集有三种格式,文中用的xml,而且是标注好的,划分之后换成txt文件然后存储到yaml文件中。
2、模型文件也存在yaml文件中,运行训练的时候主要指定数据yaml和模型yaml文件,要注意。
3、自己基础不牢,对整个项目还没贯通,还需要补充文章细节。
继续加油吧,继续复习吧,期待下一周的任务,不过由于导师要求,我可能会加快更新速度,提高论文质量。