神经网络(四):UNet语义分割网络

news2024/9/25 14:35:57

文章目录

  • 一、简介
  • 二、网络结构
    • 2.1编码器部分
    • 2.2解码器部分
    • 2.3完整代码
  • 三、实战案例


一、简介

  UNet网络是一种用于图像分割的卷积神经网络,其特点是采用了U型网络结构,因此称为UNet。该网络具有编码器和解码器结构,两种结构的功能如下:

  • 编码器:逐步提取输入图像的特征并降低空间分辨率。
  • 解码器:通过上采样操作将特征图恢复到原始输入图像的尺寸,并逐步生成分割结果。

【CNN角度的编码器、解码器】以卷积神经网络为例,输入为一个猫,进行特征提取后输出图片类别。

  • 编码器:完成对输入图片中猫的特征提取。
  • 解码器:将特征提取的结果解码为分类结果。

在这里插入图片描述
【RNN角度的编码器、解码器】以循环神经网络LSTM为例,输入为一个文本,进行特征提取再输出

  • 编码器:将文本表示为向量并实现特征提取。
  • 解码器:将向量转化为输出。

在这里插入图片描述
  UNet算法的关键创新是在解码器中引入了跳跃连接(Skip Connections),即将编码器中的特征图与解码器中对应的特征图进行连接。这种跳跃连接可以帮助解码器更好地利用不同层次的特征信息,从而提高图像分割的准确性和细节保留能力。

二、网络结构

  UNet的设计思想是通过编码器逐渐提取丰富的低级特征和高级特征,然后通过解码器逐渐恢复分辨率,并将低级特征和高级特征进行融合,以便获取准确且具有上下文信息的分割结果。这种U字形结构使得UNet能够同时利用全局和局部信息,适用于图像分割任务。执行过程可粗略描述为:

输入层 -> 编码器(下采样模块 + 编码器模块) -> 解码器(上采样模块 + 解码器模块)-> 输出层。

即:

  • 编码器(Encoder)部分
    • 输入层:接受输入图像作为模型的输入
    • 下采样模块(Downsampling Block):由一系列卷积层(通常是卷积、批归一化和激活函数的组合)和池化层组成,用于逐渐减小特征图的尺寸和通道数。这样可以逐渐提取出更高级别的特征信息。
    • 编码器模块(Encoder Block):重复使用多个下采样模块,以便逐渐减小特征图的尺寸和通道数。每个编码器模块通常包含一个下采样模块和一个跳跃连接(Skip Connection),将上一级的特征图连接到下一级,以便在解码器中进行特征融合。
  • 解码器(Decoder)部分
    • 上采样模块(Upsampling Block):由一系列上采样操作(如反卷积或转置卷积)和卷积操作组成,用于逐渐增加特征图的尺寸和通道数。这样可以逐渐恢复分辨率并且保留更多的细节信息。
    • 解码器模块(Decoder Block):重复使用多个上采样模块,以便逐渐增加特征图的尺寸和通道数。每个解码器模块通常包含一个上采样模块、一个跳跃连接和一个融合操作(如拼接或加权求和),用于将来自编码器的特征图与当前解码器的特征图进行融合。
  • 输出层:最后一层是一个卷积层,用于生成最终的分割结果。通常,输出层的通道数等于任务中的类别数,并应用适当的激活函数(如sigmoid或softmax),以产生每个像素点属于各个类别的概率分布。

跳跃连接(skip connection):输入数据直接添加到网络某一层输出之上。这种设计使得信息可以更自由地流动,并且保留了原始输入数据中的细节和语义信息。 使信息更容易传播到后面的层次,避免了信息丢失。跳跃连接通常会通过求和操作或拼接操作来实现。
在这里插入图片描述
以图像分类任务为例,假设我们使用卷积神经网络进行特征提取,在每个卷积层后面都加入一个池化层来减小特征图尺寸。然而,池化操作可能导致信息损失。通过添加一个跳跃连接,将原始输入直接与最后一个池化层输出相加或拼接起来,可以保留原始图像中更多的细节和语义信息。

  以下内容参考文章:点击跳转

2.1编码器部分

在这里插入图片描述
  编码器部分由多个下采样模块(down sampling step)组成,每个下采样模块都由两个卷积层(卷积核大小为3x3,且与ReLU函数配合使用。由于图像尺寸变小,可见并未填充)和一个最大池化层(池化核大小2x2,步幅为2,将图像尺寸收缩一半)组成,并且每一次下采样操作后特征图的通道数均增加一倍。
  事实上,随着不断执行下采样模块(也成为收缩路径),特征图通道数随着卷积操作也不断增加,从而获取了图像的更多特征。并且在进入下一下采样模块前,进行 2x2 最大池化以获得最大像素值,虽然丢失一些特征,但保留最大像素值。通过这种方式,可将图像中目标的像素按类别进行分割。每一下采样模块的实现代码如下:
【第一个下采样模块】
  卷积操作:

        self.conv1_1 = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=0)
        #(572,572,1)->((572-3+1),(572-3+1),64)->(570,570,64)
        self.relu1_1 = nn.ReLU(inplace=True)
        self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0) 
        # (570,570,64)->((570-3+1),(570-3+1),64)->(568,568,64)
        self.relu1_2 = nn.ReLU(inplace=True)

  池化操作

#采用最大池化进行下采样,图片大小减半,通道数不变,由(568,568,64)->(284,284,64)
self.maxpool_1 = nn.MaxPool2d(kernel_size=2, stride=2)  

【第二个下采样模块】
  卷积操作:

        self.conv2_1 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=0)  #(284,284,64)->(282,282,128)
        self.relu2_1 = nn.ReLU(inplace=True)
        self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=0)  #(282,282,128)->(280,280,128)
        self.relu2_2 = nn.ReLU(inplace=True)

  池化操作:

# 采用最大池化进行下采样(280,280,128)->(140,140,128)
self.maxpool_2 = nn.MaxPool2d(kernel_size=2, stride=2)  

  编码器部分总代码:

class Unet(nn.Module):
    def __init__(self):
        super(Unet, self).__init__()
        #第一个下采样模块
        self.conv1_1 = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=0)
        self.relu1_1 = nn.ReLU(inplace=True)
        self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0) 
        self.relu1_2 = nn.ReLU(inplace=True)

		self.maxpool_1 = nn.MaxPool2d(kernel_size=2, stride=2)  
		#第二个下采样模块
        self.conv2_1 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=0)  #(284,284,64)->(282,282,128)
        self.relu2_1 = nn.ReLU(inplace=True)
        self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=0)  #(282,282,128)->(280,280,128)
        self.relu2_2 = nn.ReLU(inplace=True)

        self.maxpool_2 = nn.MaxPool2d(kernel_size=2, stride=2)  
		#第三个下采样模块
        self.conv3_1 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=0)
        self.relu3_1 = nn.ReLU(inplace=True)
        self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=0)
        self.relu3_2 = nn.ReLU(inplace=True)

        self.maxpool_3 = nn.MaxPool2d(kernel_size=2, stride=2)
		#第四个下采样模块
        self.conv4_1 = nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=0)
        self.relu4_1 = nn.ReLU(inplace=True)
        self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=0)
        self.relu4_2 = nn.ReLU(inplace=True)

        self.maxpool_4 = nn.MaxPool2d(kernel_size=2, stride=2) 
		#第五个下采样模块
        self.conv5_1 = nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=3, stride=1, padding=0)  # 32*32*512->30*30*1024
        self.relu5_1 = nn.ReLU(inplace=True)
        self.conv5_2 = nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=0)
        self.relu5_2 = nn.ReLU(inplace=True)

在五个下采样操作后,特征图大小变为 ( 28 , 28 , 1024 ) (28,28,1024) (28,28,1024)

2.2解码器部分

在这里插入图片描述

  • up-conv 2x2:上采样操作,通过反卷积操作实现。
  • copy and crop:复制和裁剪,将下采样模块输出的特征图进行复制和裁剪,方便和上采样生成的特征图进行拼接。

  在下采样操作中,模型已经得到了所有类的像素特征值。虽然使用最大池化操作时丢失了一些细节信息,但无需担心。在上采样中,模型通过将具有相同下采样滤波器的级别的特征图复制到相同的上采样过滤器级别来获得完整的图像,从而保留特征。因此,我们得到完整的图像,并可以定位每个类的图像中存在的位置,并且,再次通过应用卷积来学习全尺寸图像。所以在上采样时,下采样模块输出的每个特征图都被添加到上采样模块的相应特征层中,以获得全分辨率图像,从而实现类别的定位,这一过程也被称为跳跃连接。
  第一个上采样模块细节如下:
在这里插入图片描述
  最下面的下采样模块输出特征图大小为 ( 28 , 28 , 1024 ) (28,28,1024) (28,28,1024),经过反卷积操作(up-conv 2x2)得到大小为 ( 56 , 56 , 512 ) (56,56,512) (56,56,512)的特征图,即尺寸扩大一倍,通道数减半。之后,将左侧下采样模块输出的 ( 64 , 64 , 512 ) (64,64,512) (64,64,512)图像进行复制并中心裁剪(copy and crop)同样转化为 ( 56 , 56 , 512 ) (56,56,512) (56,56,512)大小,并与之拼接得到 ( 56 , 56 , 1024 ) (56,56,1024) (56,56,1024)大小的特征图(可见,此拼接仅是通道方向的拼接)。代码实现:

# 上采样中反卷积操作的实现
self.up_conv_1 = nn.ConvTranspose2d(in_channels=1024, out_channels=512, kernel_size=2, stride=2, padding=0) # 28*28*1024->56*56*512

同理也可得到其他反卷积操作的实现:

self.up_conv_2 = nn.ConvTranspose2d(in_channels=512, out_channels=256, kernel_size=2, stride=2, padding=0) # 52*52*512->104*104*256
self.up_conv_3 = nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=2, stride=2, padding=0) # 100*100*256->200*200*128
self.up_conv_4 = nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=2, stride=2, padding=0) # 196*196*128->392*392*64

  右半部分卷积操作的代码实现:
【第一次卷积】

        self.conv6_1 = nn.Conv2d(in_channels=1024, out_channels=512, kernel_size=3, stride=1, padding=0)  # 56*56*1024->54*54*512
        self.relu6_1 = nn.ReLU(inplace=True)
        self.conv6_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=0)  # 54*54*512->52*52*512
        self.relu6_2 = nn.ReLU(inplace=True)

【第二次卷积】

        self.conv7_1 = nn.Conv2d(in_channels=512, out_channels=256, kernel_size=3, stride=1, padding=0)  # 104*104*512->102*102*256
        self.relu7_1 = nn.ReLU(inplace=True)
        self.conv7_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=0)  # 102*102*256->100*100*256
        self.relu7_2 = nn.ReLU(inplace=True)

【第三次卷积】

        self.conv8_1 = nn.Conv2d(in_channels=256, out_channels=128, kernel_size=3, stride=1, padding=0)  # 200*200*256->198*198*128
        self.relu8_1 = nn.ReLU(inplace=True)
        self.conv8_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=0)  # 198*198*128->196*196*128
        self.relu8_2 = nn.ReLU(inplace=True)

【第四次卷积】

        self.conv9_1 = nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=0)  # 392*392*128->390*390*64
        self.relu9_1 = nn.ReLU(inplace=True)
        self.conv9_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0)  # 390*390*64->388*388*64
        self.relu9_2 = nn.ReLU(inplace=True)

【第五次卷积】

        # 最后的conv1*1
        self.conv_10 = nn.Conv2d(in_channels=64, out_channels=2, kernel_size=1, stride=1, padding=0) #64x388x388->2x388x388

  中心裁剪操作的实现:

    # 中心裁剪,
    def crop_tensor(self, tensor, target_tensor):
        target_size = target_tensor.size()[2]
        tensor_size = tensor.size()[2]
        delta = tensor_size - target_size
        delta = delta // 2
        # 如果原始张量的尺寸为10,而delta为2,那么"delta:tensor_size - delta"将截取从索引2到索引8的部分,长度为6,以使得截取后的张量尺寸变为6。
        return tensor[:, :, delta:tensor_size - delta, delta:tensor_size - delta]

【第一次上采样+拼接】

        # 第一次上采样,需要"Copy and crop"(复制并裁剪)
        up1 = self.up_conv_1(x10)  # 得到56*56*512
        # 需要对x8进行裁剪,从中心往外裁剪
        crop1 = self.crop_tensor(x8, up1)
        # 拼接操作
        up_1 = torch.cat([crop1, up1], dim=1)

【第二次上采样+拼接】

		# 第二次上采样,需要"Copy and crop"(复制并裁剪)
        up2 = self.up_conv_2(y2)
        # 需要对x6进行裁剪,从中心往外裁剪
        crop2 = self.crop_tensor(x6, up2)
        # 拼接
        up_2 = torch.cat([crop2, up2], dim=1)

【第三次上采样+拼接】

        # 第三次上采样,需要"Copy and crop"(复制并裁剪)
        up3 = self.up_conv_3(y4)
        # 需要对x4进行裁剪,从中心往外裁剪
        crop3 = self.crop_tensor(x4, up3)
        up_3 = torch.cat([crop3, up3], dim=1)

【第四次上采样+拼接】

        # 第四次上采样,需要"Copy and crop"(复制并裁剪)
        up4 = self.up_conv_4(y6)
        # 需要对x2进行裁剪,从中心往外裁剪
        crop4 = self.crop_tensor(x2, up4)
        up_4 = torch.cat([crop4, up4], dim=1)

2.3完整代码

在这里插入图片描述

import torch
import torch.nn as nn

class Unet(nn.Module):
    def __init__(self):
        super(Unet, self).__init__()
        self.conv1_1 = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=0)  # 由572*572*1变成了570*570*64
        self.relu1_1 = nn.ReLU(inplace=True)
        self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0)  # 由570*570*64变成了568*568*64
        self.relu1_2 = nn.ReLU(inplace=True)

        self.maxpool_1 = nn.MaxPool2d(kernel_size=2, stride=2)  # 采用最大池化进行下采样,图片大小减半,通道数不变,由568*568*64变成284*284*64

        self.conv2_1 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=0)  # 284*284*64->282*282*128
        self.relu2_1 = nn.ReLU(inplace=True)
        self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=0)  # 282*282*128->280*280*128
        self.relu2_2 = nn.ReLU(inplace=True)

        self.maxpool_2 = nn.MaxPool2d(kernel_size=2, stride=2)  # 采用最大池化进行下采样  280*280*128->140*140*128

        self.conv3_1 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=0)  # 140*140*128->138*138*256
        self.relu3_1 = nn.ReLU(inplace=True)
        self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=0)  # 138*138*256->136*136*256
        self.relu3_2 = nn.ReLU(inplace=True)

        self.maxpool_3 = nn.MaxPool2d(kernel_size=2, stride=2)  # 采用最大池化进行下采样  136*136*256->68*68*256

        self.conv4_1 = nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=0)  # 68*68*256->66*66*512
        self.relu4_1 = nn.ReLU(inplace=True)
        self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=0)  # 66*66*512->64*64*512
        self.relu4_2 = nn.ReLU(inplace=True)

        self.maxpool_4 = nn.MaxPool2d(kernel_size=2, stride=2)  # 采用最大池化进行下采样  64*64*512->32*32*512

        self.conv5_1 = nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=3, stride=1, padding=0)  # 32*32*512->30*30*1024
        self.relu5_1 = nn.ReLU(inplace=True)
        self.conv5_2 = nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=0)  # 30*30*1024->28*28*1024
        self.relu5_2 = nn.ReLU(inplace=True)

        # 接下来实现上采样中的up-conv2*2
        self.up_conv_1 = nn.ConvTranspose2d(in_channels=1024, out_channels=512, kernel_size=2, stride=2, padding=0) # 28*28*1024->56*56*512


        self.conv6_1 = nn.Conv2d(in_channels=1024, out_channels=512, kernel_size=3, stride=1, padding=0)  # 56*56*1024->54*54*512
        self.relu6_1 = nn.ReLU(inplace=True)
        self.conv6_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=0)  # 54*54*512->52*52*512
        self.relu6_2 = nn.ReLU(inplace=True)

        self.up_conv_2 = nn.ConvTranspose2d(in_channels=512, out_channels=256, kernel_size=2, stride=2, padding=0) # 52*52*512->104*104*256

        self.conv7_1 = nn.Conv2d(in_channels=512, out_channels=256, kernel_size=3, stride=1, padding=0)  # 104*104*512->102*102*256
        self.relu7_1 = nn.ReLU(inplace=True)
        self.conv7_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=0)  # 102*102*256->100*100*256
        self.relu7_2 = nn.ReLU(inplace=True)

        self.up_conv_3 = nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=2, stride=2, padding=0) # 100*100*256->200*200*128


        self.conv8_1 = nn.Conv2d(in_channels=256, out_channels=128, kernel_size=3, stride=1, padding=0)  # 200*200*256->198*198*128
        self.relu8_1 = nn.ReLU(inplace=True)
        self.conv8_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=0)  # 198*198*128->196*196*128
        self.relu8_2 = nn.ReLU(inplace=True)

        self.up_conv_4 = nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=2, stride=2, padding=0) # 196*196*128->392*392*64


        self.conv9_1 = nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=0)  # 392*392*128->390*390*64
        self.relu9_1 = nn.ReLU(inplace=True)
        self.conv9_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0)  # 390*390*64->388*388*64
        self.relu9_2 = nn.ReLU(inplace=True)

        # 最后的conv1*1
        self.conv_10 = nn.Conv2d(in_channels=64, out_channels=2, kernel_size=1, stride=1, padding=0)

    # 中心裁剪,
    def crop_tensor(self, tensor, target_tensor):
        target_size = target_tensor.size()[2]
        tensor_size = tensor.size()[2]
        delta = tensor_size - target_size
        delta = delta // 2
        # 如果原始张量的尺寸为10,而delta为2,那么"delta:tensor_size - delta"将截取从索引2到索引8的部分,长度为6,以使得截取后的张量尺寸变为6。
        return tensor[:, :, delta:tensor_size - delta, delta:tensor_size - delta]

    def forward(self, x):
        x1 = self.conv1_1(x)
        x1 = self.relu1_1(x1)
        x2 = self.conv1_2(x1)
        x2 = self.relu1_2(x2)  # 这个后续需要使用
        down1 = self.maxpool_1(x2)

        x3 = self.conv2_1(down1)
        x3 = self.relu2_1(x3)
        x4 = self.conv2_2(x3)
        x4 = self.relu2_2(x4)  # 这个后续需要使用
        down2 = self.maxpool_2(x4)

        x5 = self.conv3_1(down2)
        x5 = self.relu3_1(x5)
        x6 = self.conv3_2(x5)
        x6 = self.relu3_2(x6)  # 这个后续需要使用
        down3 = self.maxpool_3(x6)

        x7 = self.conv4_1(down3)
        x7 = self.relu4_1(x7)
        x8 = self.conv4_2(x7)
        x8 = self.relu4_2(x8)  # 这个后续需要使用
        down4 = self.maxpool_4(x8)

        x9 = self.conv5_1(down4)
        x9 = self.relu5_1(x9)
        x10 = self.conv5_2(x9)
        x10 = self.relu5_2(x10)

        # 第一次上采样,需要"Copy and crop"(复制并裁剪)
        up1 = self.up_conv_1(x10)  # 得到56*56*512
        # 需要对x8进行裁剪,从中心往外裁剪
        crop1 = self.crop_tensor(x8, up1)
        up_1 = torch.cat([crop1, up1], dim=1)

        y1 = self.conv6_1(up_1)
        y1 = self.relu6_1(y1)
        y2 = self.conv6_2(y1)
        y2 = self.relu6_2(y2)

        # 第二次上采样,需要"Copy and crop"(复制并裁剪)
        up2 = self.up_conv_2(y2)
        # 需要对x6进行裁剪,从中心往外裁剪
        crop2 = self.crop_tensor(x6, up2)
        up_2 = torch.cat([crop2, up2], dim=1)

        y3 = self.conv7_1(up_2)
        y3 = self.relu7_1(y3)
        y4 = self.conv7_2(y3)
        y4 = self.relu7_2(y4)

        # 第三次上采样,需要"Copy and crop"(复制并裁剪)
        up3 = self.up_conv_3(y4)
        # 需要对x4进行裁剪,从中心往外裁剪
        crop3 = self.crop_tensor(x4, up3)
        up_3 = torch.cat([crop3, up3], dim=1)

        y5 = self.conv8_1(up_3)
        y5 = self.relu8_1(y5)
        y6 = self.conv8_2(y5)
        y6 = self.relu8_2(y6)

        # 第四次上采样,需要"Copy and crop"(复制并裁剪)
        up4 = self.up_conv_4(y6)
        # 需要对x2进行裁剪,从中心往外裁剪
        crop4 = self.crop_tensor(x2, up4)
        up_4 = torch.cat([crop4, up4], dim=1)

        y7 = self.conv9_1(up_4)
        y7 = self.relu9_1(y7)
        y8 = self.conv9_2(y7)
        y8 = self.relu9_2(y8)

        # 最后的conv1*1
        out = self.conv_10(y8)
        return out
if __name__ == '__main__':
    input_data = torch.randn([1, 1, 572, 572])
    unet = Unet()
    output = unet(input_data)
    print(output.shape)
    # torch.Size([1, 2, 388, 388])

三、实战案例

  准备复现论文:点击跳转

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2163825.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Redis的数据类型常用命令

目录 前言 String字符串 常见命令 set get mget mset setnx incr incrby decr decyby append Hash哈希 常见命令 hset hget hexists hdel hkeys hvals hgetall hmget hlen hsetnx List 列表 常见命令 lpush lrange lpushx rpush rpushhx lpop…

postman下载安装和导入导出脚本一键执行

下载和安装 首先,下载并安装PostMan,请访问PostMan的官方下载网址:https://www.getpostman.com/downloads/ 下载所需的安装程序后,直接安装即可 第一次打开会要求登录账号密码,如果没有,直接关闭&#xf…

海报制作哪个软件好?建议试试这5个

2024年过得飞快,转眼间国庆佳节即将到来。 在这个举国欢庆的时刻,无论是商家还是个人,都希望通过海报来传递节日的喜悦和祝福。制作一张吸引人的海报,不仅能提升品牌形象,还能增强节日氛围。 那么,如何快…

【Python报错已解决】TypeError: can only concatenate str (not “int“) to str

🎬 鸽芷咕:个人主页 🔥 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 专栏介绍 在软件开发和日常使用中,BUG是不可避免的。本专栏致力于为广大开发者和技术爱好者提供一个关于BUG解决的经…

【Java 问题】基础——Java 概述

Java 概述 1. 什么是 Java ?2. Java 语言有哪些特点3. JVM、JDK 和 JRE 有什么区别?4. 说说什么是跨平台性?原理是什么?5. 什么是字节码?采用字节码的好处是什么?6. 为什么说 Java 语言 "编译与解释并存"?…

汽车行业SAP全球模版导入方案【集团出海部署】

在汽车行业实施SAP系统是一个复杂且具挑战性的项目,涉及多个业务模块和跨部门协作。以下是一个汽车行业SAP实施的导入方案,包括关键步骤、模块选择、最佳实践和注意事项。 1. 项目启动及规划 项目启动 项目发起:确定项目范围、目标和业务需…

Spring源码-ConfigurationClassPostProcessor类解析spring相关注解

ConfigurationClassPostProcessor类的作用 此类是一个后置处理器的类,主要功能是参与BeanFactory的建造,主要功能如下 1、解析加了Configuration的配置类 2、解析ComponentScan扫描的包 3、解析ComponentScans扫描的包 4、解析Import注解 该类在springbo…

【原创教程】如何用西门子1500读写巴鲁夫RFID

实现的功能及应用的场合 通过使用RFID进行对托盘信息工件信息的追踪记忆,方便了解工件的状态内容。适用于流水线等场合。 硬件配置 巴鲁夫RFID 巴鲁夫RFID一套包含:RFID分析单元,RFID数据读写头,RFID数据载体。 ①RFID分析单…

ai写论文哪个平台好?分享4款ai论文写作平台软件

在当前的学术研究和论文写作领域,AI技术的应用已经成为一种趋势。通过智能算法和大数据分析,AI工具能够帮助学者和学生提高写作效率、优化内容结构,并确保论文的原创性和质量。以下是四款备受推荐的AI论文写作平台软件: 1. 千笔-…

Js基础

JS编写位置 将代码编写在html网页script标签 <script>// 弹出alert("test")// 控制台输出日志console.log("hello world")// 向网页输入内容&#xff0c;即往body中写内容document.write("write content")</script> 将代码编写在外部…

原腾讯云AI产品线项目经理李珊受邀为第四届中国项目经理大会演讲嘉宾

全国项目经理专业人士年度盛会 原腾讯云AI产品线项目经理、资深项目管理专家李珊女士受邀为PMO评论主办的全国项目经理专业人士年度盛会——2024第四届中国项目经理大会演讲嘉宾&#xff0c;演讲议题为&#xff1a;AI助力项目经理的决策支持系统。大会将于10月26-27日在北京举办…

生态布局再进一步!拓数派 PieCloudDB Database 与 openEuler 完成兼容互认证

随着信息技术的快速发展&#xff0c;国产化自主创新已成为国家战略的核心部分。拓数派自主研发的云原生虚拟数仓 PieCloudDB 与国产操作系统 openEuler 已完成相互兼容性测试&#xff0c;并获得 openEuler 技术测评证书。 目前&#xff0c;拓数派已成功与华为鲲鹏、麒麟软件、龙…

基于Java+Mysql实现的PC端图书管理系统软件

Library_system 图书管理系统。用Java实现的PC端软件。使用MySql作为DBMS操作本地数据库&#xff0c;用JDBC连接Java和数据库。实现图书管理系统的基本功能 项目介绍 该项目主要实现了图书管理系统几个主要的基本功能&#xff0c;做这小项目是为了简单学习数据库设计、包括E…

系统架构师-面向服务架构(SOA)全解

1、为什么需要SOA架构 1.1 系统集成问题 异构系统整合 例如&#xff0c;一个企业可能同时拥有用 Java 开发的企业资源规划&#xff08;ERP&#xff09;系统、用 C# 开发的客户关系管理&#xff08;CRM&#xff09;系统以及用 Python 开发的数据分析系统。通过 SOA&#xff0…

9月24日笔记

内网信息收集 本机基础信息收集 当通过web渗透或者其他方式活动服务器主机权限之后&#xff0c;需要以该主机作为跳板&#xff0c;对内网环境进行渗透&#xff0c;对于攻陷的第一台主机&#xff0c;其在内网中所处的网络位置、当前登录的用户、该用户有什么样的权限、其操作系…

微信小程序开发第八课

一 公告 1.1 微信小程序端 #js###const api require("../../config/settings.js") Page({data: {noticeList: [{title: 公告标题1,create_time: 2024-04-25,content: 公告内容描述1&#xff0c;公告内容描述1&#xff0c;公告内容描述1。, // 可以根据实际情况添加…

几个将ppt文件压缩变小的方法!

几个将ppt文件压缩变小的方法&#xff01;在构建集文字、图像、视频及数据表于一体的综合PPT演示文稿时&#xff0c;一个常见挑战是随着内容的不断丰富&#xff0c;文件体积也随之膨胀&#xff0c;这往往源于直接嵌入未经优化的多媒体资源及设计上的冗余元素&#xff0c;如繁复…

数字人实战第五天——Dinet 训练自己的数字人

一、简介 DINet 是一个形变修复网络&#xff0c;专门用于解决高分辨率人脸视觉配音中的难题。它的设计目的是为了提升视觉配音的保真度和细节丰富性&#xff0c;特别是在少样本学习的情境下&#xff0c;即在训练数据较少的情况下依然能够实现较好的配音效果。 DINet的技术实现…

html TAB切换按钮变色、自动生成table

<!DOCTYPE html> <head> <meta charset"UTF-8"> <title>Dynamic Tabs with Table Data</title> <style> /* 简单的样式 */ .tab-content { display: none; border: 1px solid #ccc; padding: 1px; marg…

【专题总结】【一文解决】多继承下的构造函数执行顺序

多继承下的构造函数执行顺序 派生类构造函数执行顺序如下 ①调用基类构造函数→调用顺序按它们被继承时【从左至右】被说明的次序 ②调用子对象的构造函数→调用顺序按它们在【类中说明次序】 ③调用派生类的构造函数 【典型题1】13浙工大卷二读程序4题 【分析】下面①classC:p…