人工智能-机器学习-深度学习-分类与算法梳理

news2025/4/4 17:53:54

目前人工智能的概念层出不穷,容易搞混,理清脉络,有益新知识入脑。

为便于梳理,本文只有提纲,且笔者准备仓促,敬请勘误,不甚感激。
请看右边目录索引

人工智能

三大派系


符号主义(Symbolists) 基于逻辑推理的智能模拟方法。最喜欢的算法是:规则和决策树。符号主义的代表性成果有启发式程序、专家系统、知识工程等,IBM“深蓝”计算机为典型应用。

连接主义(Connectionist) 使用概率矩阵和加权神经元来动态地识别和归纳模式,奠基人是明斯基(MIT),发展最火是深度学习,深度神经网络,ChatGPT为典型应用。

行为主义(actionism) 其原理为控制论及感知-动作型控制系统。擅长于使用遗传算法(Genetic Algorithm,GA)和遗传编程。行为主义的代表性成果有六足行走机器人、波士顿动力机器人等。

还有五派分法,笔者本人未弄清内部逻辑,感觉无法和本文的体系融体,未列出。

三大分支

  • 认知AI(cognitive AI)
  • 机器学习(Machine Learning AI)
  • 深度学习(Deep Learning) : 是一种特殊的机器学习。

image.png

2016年Alpha Go打败了李世石,确立了深度学习正在机器学习领域中的霸主地位

核心技术与领域


  • 机器学习(Machine learning)
  • 深度学习(Deep learning)
  • 计算机视觉(Computer Vision) 图像识别、目标检测、图像分割、人脸识别等技;模型有CNN、FCN、RCNN 等
  • 自然语言处理(Natural Language Processing, NLP) 语音识别、文本分类、信息抽取、机器翻译等多个方面,模型RNN、LSTM、transformer等
  • 自动规划和决策:自动规划和决策涉及开发能够自主感知环境并作出决策的算法和系统,它可以应用于无人驾驶汽车、物流规划、智能机器人等领域

还有诸如:机器人、专家系统、智能搜索、自动程序设计等

四大要素


  • 数据
  • 算力
  • 算法
  • 应用

机器学习


问题分类

  • 有监督学习(Supervised Learning): 分类、回归
  • 无监督学习(Unsupervised Learning):聚类、维降、关联
  • 强化学习(Reinforcement Learning)

监督学习常见算法


  1. 朴素贝叶斯
  2. 决策树
  3. 支持向量机
  4. 逻辑回归
  5. 线性回归
  6. k近邻
  7. AdaBoost
  8. 神经网络

前4解决分类问题,第5用于回归问题, 后3个解决分类回归问题

非监督学习算法


  1. K-means(K-均值)
  2. Birch(综合层次聚类)
  3. Dbscan(基于密度聚类)
  4. String(字符串聚类)
  5. PCA(Principal Component Analysis 主要成分分析)
  6. LDA(Linear Discriminate Analysis 线性判别分析)
  7. LLE(Locally linear embedding 局线性判别分析部线性嵌入)
  8. LE(Laplacian Eigenmaps 拉普拉斯映射)

前4为聚类算法,后4个为降维算法

强化学习


强化学习用以描述和解决智能体(agent)在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标的问题。

基本模型

image.png

  • 智能体(agent): 学习的本体,即学习者或者决策者
  • 环境(environment): 智能体以外的一切,主要由状态集合组成
  • 状态(state): 表示环境的数据
  • 动作(action): 智能体可做出的动作
  • 奖励(reward): 智能体在执行一个动作后,获得的正/负反馈信号

现在正当时的Q-Learning就是强化学习的一种

深度学习

基础知识


  • 正向传播
  • 反向传播
  • 梯度计算
  • 损失函数
  • 激活函数:sigmoid、tanh、ReLu、SoftMax

深度算法


  • 卷积神经网络(Convolutional Neural Networks,CNN)
  • 递分子循环)神经网络(Recurrent Neural Networks,RNN)
  • 长短时记忆网络(Long Short-Term Memory,LSTM)
  • 生成对抗网络(Generative Adversarial Networks,GAN)
  • 可变自编码器(Variational Autoencoders,VAE)
  • 深度强化学习(Deep Reinforcement Learning,DRL)
  • 深度信念网络(Deep Belief Networks,DBN)
  • 自编码器(Autoencoders AE)
  • 迁移学习(Transfer Learning)
  • 残差网络(ResNet)
  • 注意力机制(Attention)

机器学习、深度学习、强化学习三者交叉关系


  • 机器学习:所有以优化方法挖掘数据中规律的学科
  • 深度学习:运用了神经网络作为参数结构进行优化的机器学习算法
  • 强化学习:不仅利用现有数据还对环境的探索获得新数据,并利用新数据循环往复地更新迭代现有模型
  • 深度强化学习:运用了神经网络作为参数结构进行优化的强化学习算法。

AI大模型

大模型指的是在训练阶段和推理阶段需要大量参数和计算资源的深度学习模型。

特点

  • 大量的参数
  • 上下文理解和生成
  • 强大的泛化能力
  • 计算资源需求大
  • 迁移学习能力
  • 预训练与微调
  • 多领域应用

所处位置


image.png

按工作方式分类


  • 强化学习模型(Reinforcement Learning Models)
  • 生成模型(Generative Models)

按数据类型分类


  • 语言模型(Language Models)
  • 图像模型(Image Models)
  • 多模态大模型(Multimodal Models)

主流AI大模型


  • OpenAI GPT大模型组
  • Google PaLM & PaLM 2大模型组
  • 百度文心大模型组
  • 讯飞星火认知大模型
  • 阿里通义大模型
  • 清华开源大模型ChatGLM
  • Llama2
  • Baichuan

未来趋势


  • 通用大模型与专用小模型协同发展
  • 模型即服务将不断成为主流(MaaS)
  • 拥有算力、模型、平台和产品经验的科技公司成为重要参与者

如果您也对AI大模型感兴趣想学习却苦于没有方向👀
小编给自己收藏整理好的学习资料分享出来给大家💖
👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码关注免费领取【保证100%免费】🆓
请添加图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉如何学习AI大模型?👈

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

请添加图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

在这里插入图片描述

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

在这里插入图片描述

四、AI大模型商业化落地方案

在这里插入图片描述

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2162562.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[附源码]宠物领养管理系统+SpringBoot

今天带来一款优秀的项目:宠物领养管理系统源码 。 系统采用的流行的前后端分离结构,内含功能包括"管理端",“用户领养端”,“宠物管理”,“权限登录”等功能。 如果您有任何问题,也请联系小编&a…

keepalived+lvs集群

目录 一、环境 二、配置 1、master 1.在master上安装配置Keepalived 2.在master上修改配置文件 2、backup 1.在backup(192.168.229.12)上安装keepalived 2.在backup上修改配置文件 3、master和backup上启动服务 4、web服务器配置 1.web1和web…

使用Java基于GeoTools读取Shapefile矢量数据属性信息-以某市POI数据为例

前言 在之前的博客中,我们讲过在GDAL中如何读取空间数据的属性和数据信息,也简单的讲过如何在GeoTools中读取Shapefile文件的属性信息和数据信息。对于空间矢量数据库,就像我们传统的二维数据库的表字段和表数据的关系,在研究表数…

BERT训练之数据集处理(代码实现)

目录 1读取文件数据 2.生成下一句预测任务的数据 3.预测下一个句子 4.生成遮蔽语言模型任务的数据 5.从词元中得到遮掩的数据 6.将文本转化为预训练数据集 7.封装函数类 8.调用 import os import random import torch import dltools 1读取文件数据 def _read_wiki(data_d…

Java框架学习(Spring)(ioc)(01)

简介:以本片记录在尚硅谷学习ssm-spring-ioc时遇到的小知识 详情移步:想参考的朋友建议全部打开相互配合学习! 视频: 014-spring-框架概念理解_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1AP411s7D7?p14&vd_sou…

SpringBoot框架在文档管理中的创新应用

第3章 系统分析 3.1 需求分析 在线文档管理系统主要是为了提高工作人员的工作效率和更方便快捷的满足员工,更好存储所有数据信息及快速方便的检索功能,对系统的各个模块是通过许多今天的发达系统做出合理的分析来确定考虑员工的可操作性,遵循…

峟思助力堤防工程安全:构建多功能防洪屏障

堤防工程,作为水利建设中至关重要的防护体系,不仅守护着江河、湖泊及滨海区域的安全,更是确保人民生命财产安全的坚固防线。在现代社会,随着技术的进步与安全意识的提升,堤防工程不仅限于传统的防洪功能,更…

SpringBoot和JPA初探

目录 SpringBoot和JPA初探0.准备条件1.创建JPA项目2.项目3.总结 SpringBoot和JPA初探 我们使用SpringBootJPA做一个简单的API接口演示,通过一个简单的例子让大家对Spring Data JPA有一个整体的认知。 0.准备条件 IntelliJ IDEAjdk 1.8mysql 8.0maven 3.8.x 1.创…

代码随想录算法训练营第三十九天 | 198.打家劫舍 ,213.打家劫舍II,337.打家劫舍III

第三十九天打卡,今天解决打家劫舍系列问题,树形dp比较难。 198.打家劫舍 题目链接 解题过程 dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]。 要么不偷这一间,那就是前面那间…

开源链动 2+1 模式、AI 智能名片与 S2B2C 商城小程序:以问题解决为导向的盈利新模式

摘要:本文探讨了问题解决盈利模式的重要性,并结合开源链动 21 模式、AI 智能名片以及 S2B2C 商城小程序等创新工具,阐述了如何以用户为中心,通过深刻洞察用户需求,解决用户问题,实现盈利增长。强调了在当今…

[利用python进行数据分析01] “来⾃Bitly的USA.gov数据” 分析出各个地区的 windows和非windows用户

2011 年, URL 缩短服务 Bitly 跟美国政府⽹站 USA.gov 合作,提供 了⼀份从⽣成 .gov 或 .mil 短链接的⽤户那⾥收集来的匿名数据。 在 2011 年,除实时数据之外,还可以下载⽂本⽂件形式的每⼩时 快照。 数据集下载:通…

LabVIEW项目编码器选择

在LabVIEW项目中,选择增量式(Incremental Encoder)和绝对式(Absolute Encoder)编码器取决于项目的具体需求。增量式编码器和绝对式编码器在工作原理、应用场景、精度和成本等方面存在显著差异。以下从多方面详细阐述两…

通过service访问Pod

假设Pod中的容器可能因为各种原因发生故障而死掉,Deployment等controller会通过动态创建和销毁Pod来保证应用整体的健壮性,换句话说,Pod是脆弱的,但应用是健壮的 每个Pod都有自己的Ip,当controller用新的Pod替代发生故…

SDK(2 note)

复习上一次内容&#xff1a; 把前一次笔记中的代码&#xff0c;简写一下 #include <windows.h> #include<tchar.h> #include <stdio.h> #include <strsafe.h> VOID showerrormassage() {LPVOID lpMsgBuf; FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFF…

TS-AI:一种用于多模态个体化脑区划分的深度学习管道,并结合任务对比合成|文献速递-Transformer架构在医学影像分析中的应用

Title 题目 TS-AI: A deep learning pipeline for multimodal subject-specific parcellation with task contrasts synthesis TS-AI&#xff1a;一种用于多模态个体化脑区划分的深度学习管道&#xff0c;并结合任务对比合成 01 文献速递介绍 人类大脑在结构和功能组织上表…

nfs版本问题导致挂载失败

一、系统环境 环境版本操作系统Linux Mint 22 Wilma内核版本6.8.0-44-genericgcc 版本arm-none-linux-gnueabihf-gcc (GNU Toolchain for the A-profile Architecture 9.2-2019.12 (arm-9.10)) 9.2.1 20191025uboot 版本2020.01开发板Linux版本5.4.31 二、问题描述 内核通过…

拒绝信息泄露!VMD滚动分解 + Informer-BiLSTM并行预测模型

前言 在时间序列预测任务中&#xff0c;像 EMD&#xff08;经验模态分解&#xff09;、CEEMDAN&#xff08;完全集合经验模态分解&#xff09;、VMD&#xff08;变分模态分解&#xff09; 等分解算法的使用有可能引入信息泄露&#xff0c;具体情况取决于这些方法的应用方式。信…

通过WebTopo在ARMxy边缘计算网关上实现系统集成

随着工业互联网技术的发展&#xff0c;边缘计算成为了连接物理世界与数字世界的桥梁&#xff0c;其重要性日益凸显。边缘计算网关作为数据采集、处理与传输的核心设备&#xff0c;在智能制造、智慧城市等领域发挥着关键作用。 1. BL340系列概述 BL340系列是基于全志科技T507-…

yolov8/9关键点检测模型检测俯卧撑动作并计数【源码免费+数据集+python环境+GUI系统】

yolov89模型检测俯卧撑动作并计数【源码免费数据集python环境GUI系统】 yolov8/9关键点检测模型检测俯卧撑动作并计数【源码免费数据集python环境GUI系统】 YOLO算法原理 YOLO&#xff08;You Only Look Once&#xff09;关键点检测的算法原理主要基于YOLO目标检测算法进行改进…

R包:VennDiagram韦恩图

加载R包 library(VennDiagram)数据 # Prepare character vectors v1 <- c("DKK1", "NPC1", "NAPG", "ERG", "VHL", "BTD", "MALL", "HAUS1") v2 <- c("SMAD4", "DKK1…