当情人节年年如约而至,每每都需费尽心思为对方营造一场令人难忘的仪式,却因缺乏创意与思路而倍感困扰。今天,我决定让大型语言模型为我们提供一些灵感和建议,让我们能够轻松实现这一目标。让我们开始行动吧!此前,我曾撰写一篇关于如何与大型语言模型建立基本对话的文章。
图片
在这个新版本中,我引入了一个全新的功能——图片上传窗口,旨在方便调用文生图接口,实现对图片进行风格转化,从而为对方呈现一幅心仪的作品。让我们一起来实际操作吧。
# 在聊天输入框下方添加文件上传组件
uploaded_file = st.file_uploader("上传文件", type=['txt', 'pdf', 'png', 'jpg', 'jpeg', 'gif'])
if uploaded_file is not None:
# 可以在这里添加处理上传文件的代码
# 显示上传的图片
st.image(uploaded_file, width=30)
st.write("文件上传成功!")
在这次更新中,我新增了一个简单的展示功能,特别是为了确保在streamlit封装的布局中能够将其置于标题上方。这样一来,我们便能够在对话过程中保持其可见,避免不必要的消失。务必留意这一点,以确保用户体验的连贯性。
简要信息搜索
我还引入了一个全新的搜索功能,旨在让用户能够轻松搜索与情人节相关的信息,以供大模型使用,从而提升回答的质量和准确性。同时也能够让大模型更好地理解用户需求,为其提供更加个性化和有效的回答。
from googlesearch import search
def perform_google_search(query, num_results=10):
"""
Perform a Google search using the specified query and number of results.
Args:
query (str): The search query.
num_results (int): The number of search results to return.
Returns:
list of dicts: A list containing dictionaries with keys 'title', 'url', and 'summary'.
"""
proxy = "http://127.0.0.1:10809"
results = []
for result in search(query, num_results=num_results, lang='en',proxy = proxy,ssl_verify = False):
title = result.get('title')
url = result.get('url')
summary = result.get('summary')
results.append({
"Title": title,
"URL": url,
"Summary": summary
})
print("Title: ", title)
print("URL: ", url)
print("Summary: ", summary)
print()
return results
其实通常情况下,我们会选择使用langchain的谷歌搜索来获取所需信息,但由于需要申请API密钥,因此我决定改用这个工具,它的底层机制类似于爬虫程序。
总结
在这篇文章中,我们介绍了如何利用大型语言模型为情人节营造难忘的氛围。通过上传图片并进行风格转化,我们可以为对方呈现一幅独特的作品,增添浪漫的色彩。同时,借助搜索功能,我们能够轻松获取与情人节相关的信息,为策划活动提供更多灵感和建议。
当你准备调用大模型进行回答时,只需添加一个提示词即可启动。在实现这一过程中,我发现使用智能体搭建的方法更为高效。因此,如果你打算自行创建工具,最好保持简洁。智能体已经经过良好封装,使用起来非常方便。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓