目标检测系列(一)什么是目标检测

news2024/9/24 15:59:22

目录

一、相关名词解释

二、目标检测算法

三、目标检测模型

四、目标检测应用

五、目标检测数据集

六、目标检测常用标注工具


一、相关名词解释

关于图像识别的计算机视觉四大类任务:

分类(Classification):解决“是什么?”的问题,即给定一张图片或一段视频判断里面包含什么类别的目标。

定位(Location):解决“在哪里?”的问题,即定位出这个目标的的位置。

检测(Detection):解决“在哪里?是什么?”的问题,即定位出这个目标的位置并且知道目标物是什么。

分割(Segmentation):分为实例的分割(Instance-level)和场景分割(Scene-level),解决“每一个像素属于哪个目标物或场景”的问题。

目标检测(Object Detection)任务:找出图像中所有感兴趣的目标(物体),确定它们的类别和位置。是一个分类、回归问题的叠加。

所以,目标检测核心问题有4个:

(1)分类问题:即图片(或某个区域)中的图像属于哪个类别。

(2)定位问题:目标可能出现在图像的任何位置。

(3)大小问题:目标有各种不同的大小。

(4)形状问题:目标可能有各种不同的形状。

二、目标检测算法

(1)算法分类

Tow stage:先进行区域生成,该区域称之为region proposal(简称RP,一个有可能包含待检物体的预选框),再通过卷积神经网络进行样本分类。

任务流程:特征提取 –> 生成RP –> 分类/定位回归。

常见tow stage目标检测算法有:R-CNN、SPP-Net、Fast R-CNN、Faster R-CNN和R-FCN等。

One stage:不用RP,直接在网络中提取特征来预测物体分类和位置。

任务流程:特征提取–> 分类/定位回归。

常见的one stage目标检测算法有:OverFeat、YOLOv1、YOLOv2、YOLOv3、SSD和RetinaNet等。

(2)算法原理

1. 候选区域产生

很多目标检测技术都会涉及候选框(bounding boxes)的生成,物体候选框获取当前主要使用图像分割与区域生长技术。区域生长(合并)主要由于检测图像中存在的物体具有局部区域相似性(颜色、纹理等)。目标识别与图像分割技术的发展进一步推动有效提取图像中信息。

1)滑动窗口

通过滑窗法流程图(见下图)可以很清晰理解其主要思路:首先对输入图像进行不同窗口大小的滑窗进行从左往右、从上到下的滑动。每次滑动时候对当前窗口执行分类器(分类器是事先训练好的)。如果当前窗口得到较高的分类概率,则认为检测到了物体。对每个不同窗口大小的滑窗都进行检测后,会得到不同窗口检测到的物体标记,这些窗口大小会存在重复较高的部分,最后采用非极大值抑制(Non-Maximum Suppression, NMS)的方法进行筛选。最终,经过NMS筛选后获得检测到的物体。

滑窗法简单易于理解,但是不同窗口大小进行图像全局搜索导致效率低下,而且设计窗口大小时候还需要考虑物体的长宽比。所以,对于实时性要求较高的分类器,不推荐使用滑窗法。

2)选择性搜索

① 什么是选择性搜索

滑窗法类似穷举进行图像子区域搜索,但是一般情况下图像中大部分子区域是没有物体的。学者们自然而然想到只对图像中最有可能包含物体的区域进行搜索以此来提高计算效率。选择搜索(selective search,简称SS)方法是当下最为熟知的图像bounding boxes提取算法,由Koen E.A于2011年提出。

 选择搜索算法的主要思想:图像中物体可能存在的区域应该是有某些相似性或者连续性区域的。因此,选择搜索基于上面这一想法采用子区域合并的方法进行提取bounding boxes。首先,对输入图像进行分割算法产生许多小的子区域。其次,根据这些子区域之间相似性(相似性标准主要有颜色、纹理、大小等等)进行区域合并,不断的进行区域迭代合并。每次迭代过程中对这些合并的子区域做bounding boxes(外切矩形),这些子区域外切矩形就是通常所说的候选框。

② 选择搜索流程

step0:生成区域集R

step1:计算区域集R里每个相邻区域的相似度S={s1, s2,…}

step2:找出相似度最高的两个区域,将其合并为新集,添加进R

step3:从S中移除所有与step2中有关的子集

step4:计算新集与所有子集的相似度

step5:跳至step2,直至S为空

③ 选择搜索优点

计算效率优于滑窗法

由于采用子区域合并策略,所以可以包含各种大小的疑似物体框

合并区域相似的指标多样性,提高了检测物体的概率

2. 数据表示

经过标记后的样本数据如下所示:

预测输出包括预测结果的置信概率、边框坐标、属于某个类别的概率。通过预测结果和实际结果构建损失函数。损失函数包含了分类、回归两部分组成。

边界框(bounding box):论文中设置为2,每个栅格的两个bounding box都是预测同一类物体。每个bounding box含有5个值(x,y,w,h,confidence)。

x,y:代表了预测的bounding box的中心与某个栅格的偏移值。

w,h:代表了预测的bounding box的width、height相对于整幅图像width,height的比例。

置信度(confidence):若bounding box包含物体,则P(object) = 1;否则P(object) = 0。bounding box和ground truth box的IOU值。

3. 效果评估

使用IoU(Intersection over Union,交并比)来判断模型的好坏。所谓交并比,是指预测边框、实际边框交集和并集的比率,一般约定0.5为一个可以接收的值。

4. 非极大值抑制

预测结果中,可能多个预测结果间存在重叠部分,需要保留交并比最大的、去掉非最大的预测结果,这就是非极大值抑制(Non-Maximum Suppression,简写作NMS)。如下图所示,对同一个物体预测结果包含三个概率0.8/0.9/0.95,经过非极大值抑制后,仅保留概率最大的预测结果。

三、目标检测模型

目标检测分为两大系列——RCNN系列和YOLO系列,RCNN系列是基于区域检测的代表性算法;YOLO是基于区域提取的代表性算法,另外还有著名的SSD是基于前两个系列的改进。

1)R-CNN

① 定义

R-CNN(全称Regions with CNN features) ,是R-CNN系列的第一代算法,其实没有过多的使用“深度学习”思想,而是将“深度学习”和传统的“计算机视觉”的知识相结合。比如R-CNN pipeline中的第二步和第四步其实就属于传统的“计算机视觉”技术。使用selective search提取region proposals,使用SVM实现分类。

② 流程

  1. 预训练模型。选择一个预训练 (pre-trained)神经网络(如AlexNet、VGG)。
  2. 重新训练全连接层。使用需要检测的目标重新训练(re-train)最后全连接层(connected layer)。
  3. 提取 proposals并计算CNN 特征。利用选择性搜索(Selective Search)算法提取所有proposals(大约2000幅images),调整(resize/warp)它们成固定大小,以满足 CNN输入要求(因为全连接层的限制),然后将feature map 保存到本地磁盘。
  4. 训练SVM。利用feature map 训练SVM来对目标和背景进行分类(每个类一个二进制SVM)
  5. 边界框回归(Bounding boxes Regression)。训练将输出一些校正因子的线性回归分类器

③ 效果

R-CNN在VOC 2007测试集上mAP达到58.5%,打败当时所有的目标检测算法

④ 缺点

  1. 重复计算,每个region proposal,都需要经过一个AlexNet特征提取,为所有的RoI(region of interest)提取特征大约花费47秒,占用空间,
  2. selective search方法生成region proposal,对一帧图像,需要花费2秒
  3. 三个模块(提取、分类、回归)是分别训练的,并且在训练时候,对于存储空间消耗较大。

2)Fast R-CNN

① 定义

Fast R-CNN是基于R-CNN和SPPnets进行的改进。SPPnets,其创新点在于只进行一次图像特征提取(而不是每个候选区域计算一次),然后根据算法,将候选区域特征图映射到整张图片特征图中。

② 流程

  1. 使用selective search生成region proposal,大约2000个左右区域候选框
  2. (joint training)缩放图片的scale得到图片金字塔,FP得到conv5的特征金字塔
  3. (joint training)对于每个scale的每个ROI,求取映射关系,在conv5中剪裁出对应的patch。并用一个单层的SSP layer来统一到一样的尺度(对于AlexNet是6*6)
  4. (joint training) 继续经过两个全连接得到特征,这特征又分别共享到两个新的全连接,连接上两个优化目标。第一个优化目标是分类,使用softmax,第二个优化目标是bbox regression,使用了一个平滑的L1-loss
  5. 测试时需要加上NMS处理:利用窗口得分分别对每一类物体进行非极大值抑制提出重叠建议框,最终得到每个类别中回归修正后的得分最高的窗口

③ 改进

  1. 和RCNN相比,训练时间从84小时减少为9.5小时,测试时间从47秒减少为0.32秒。在VGG16上,Fast RCNN训练速度是RCNN的9倍,测试速度是RCNN的213倍;训练速度是SPP-net的3倍,测试速度是SPP-net的3倍
  2. Fast RCNN在PASCAL VOC 2007上准确率相差无几,约在66~67%之间
  3. 加入RoI Pooling,采用一个神经网络对全图提取特征
  4. 在网络中加入了多任务函数边框回归,实现了端到端的训练

④ 缺点

  1. 依旧采用selective search提取region proposal(耗时2~3秒,特征提取耗时0.32秒)
  2. 无法满足实时应用,没有真正实现端到端训练测试
  3. 利用了GPU,但是region proposal方法是在CPU上实现的

3)Faster RCNN

经过R-CNN和Fast-RCNN的积淀,Ross B.Girshick在2016年提出了新的Faster RCNN,在结构上将特征抽取、region proposal提取, bbox regression,分类都整合到了一个网络中,使得综合性能有较大提高,在检测速度方面尤为明显。

① 整体流程

  1. Conv Layers。作为一种CNN网络目标检测方法,Faster RCNN首先使用一组基础的卷积/激活/池化层提取图像的特征,形成一个特征图,用于后续的RPN层和全连接层。
  2. Region Proposal Networks(RPN)。RPN网络用于生成候选区域,该层通过softmax判断锚点(anchors)属于前景还是背景,在利用bounding box regression(包围边框回归)获得精确的候选区域。
  3. RoI Pooling。该层收集输入的特征图和候选区域,综合这些信息提取候选区特征图(proposal feature maps),送入后续全连接层判定目标的类别。
  4. Classification。利用取候选区特征图计算所属类别,并再次使用边框回归算法获得边框最终的精确位置。

② Anchors

Anchors(锚点)指由一组矩阵,每个矩阵对应不同的检测尺度大小。如下矩阵:

其中每行4个值( x 1 , y 1 , x 2 , y 2 x_1, y_1, x_2, y_2 x1​,y1​,x2​,y2​),对应矩形框左上角、右下角相对于中心点的偏移量。9个矩形共有三种形状,即1:1, 1:2, 2:1,即进行多尺度检测。

例如,一张800*600的原始图片,经过VGG下采样后(生成特征矩阵)16倍大小,大小变为50*38,每个点设置9个anchor,则总数为:

③ Bounding box regression

物体识别完成后,通过一种方式对外围框进行调整,使得和目标物体更加接近。

④ 损失函数

对一个图像的损失函数,是一个分类损失函数与回归(位置)损失函数的叠加。

⑤ 改进

  1. 在VOC2007测试集测试mAP达到73.2%,目标检测速度可达5帧/秒
  2. 提出Region Proposal Network(RPN),取代selective search,生成待检测区域,时间从2秒缩减到了10毫秒
  3. 真正实现了一个完全的End-To-End的CNN目标检测模型
  4. 共享RPN与Fast RCNN的特征

⑥ 缺点

  1. 还是无法达到实时检测目标
  2. 获取region proposal, 再对每个proposal分类计算量还是较大

2. YOLO系列

1)YOLOv1(2016)

① 基本思想

YOLO(You Only Look Once )是继RCNN,fast-RCNN和faster-RCNN之后,Ross Girshick针对DL目标检测速度问题提出的另一种框架,其核心思想是生成RoI+目标检测两阶段(two-stage)算法用一套网络的一阶段(one-stage)算法替代,直接在输出层回归bounding box的位置和所属类别。

之前的物体检测方法首先需要产生大量可能包含待检测物体的先验框, 然后用分类器判断每个先验框对应的边界框里是否包含待检测物体,以及物体所属类别的概率或者置信度,同时需要后处理修正边界框,最后基于一些准则过滤掉置信度不高和重叠度较高的边界框,进而得到检测结果。这种基于先产生候选区再检测的方法虽然有相对较高的检测准确率,但运行速度较慢。

YOLO创造性的将物体检测任务直接当作回归问题(regression problem)来处理,将候选区和检测两个阶段合二为一。只需一眼就能知道每张图像中有哪些物体以及物体的位置。下图展示了各物体检测系统的流程图。

实际上,YOLO并没有真正去掉候选区,而是采用了预定义候选区的方法,也就是将图片划分为7*7个网格,每个网格允许预测出2个边框,总共49*2个bounding box,可以理解为98个候选区域,它们很粗略地覆盖了图片的整个区域。YOLO以降低mAP为代价,大幅提升了时间效率。

②模型详细介绍见:目标检测系列(二)yolov1的全面讲解-CSDN博客

③ 优点与缺点

(1)优点

  1. YOLO检测物体速度非常快,其增强版GPU中能跑45fps(frame per second),简化版155fps
  2. YOLO在训练和测试时都能看到一整张图的信息(而不像其它算法看到局部图片信息),因此YOLO在检测物体是能很好利用上下文信息,从而不容易在背景上预测出错误的物体信息
  3. YOLO可以学到物体泛化特征

(2)缺点

  1. 精度低于其它state-of-the-art的物体检测系统
  2. 容易产生定位错误
  3. 对小物体检测效果不好,尤其是密集的小物体,因为一个栅格只能检测2个物体
  4. 由于损失函数的问题,定位误差是影响检测效果的主要原因,尤其是大小物体处理上还有待加强

2)YOLOv2(2016)

Ross Girshick吸收fast-RCNN和SSD算法,设计了YOLOv2(论文原名《YOLO9000: Better, Faster, Stronger 》),在精度上利用一些列训练技巧,在速度上应用了新的网络模型DarkNet19,在分类任务上采用联合训练方法,结合wordtree等方法,使YOLOv2的检测种类扩充到了上千种,作者在论文中称可以检测超过9000个目标类别,所以也称YOLO9000. YOLOv2模型可以以不同的尺寸运行,从而在速度和准确性之间提供了一个简单的折衷,在67FPS时,YOLOv2在VOC 2007上获得了76.8 mAP。在40FPS时,YOLOv2获得了78.6 mAP,比使用ResNet的Faster R-CNN和SSD等先进方法表现更出色,同时仍然运行速度显著更快。

①改进策略

YOLOv2对YOLOv1采取了很多改进措施,以提高模型mAP,如下图所示:

②模型详细介绍见:待补充

③ 优点与缺点

(1)优点

  1. YOLOv2使用了一个新的分类器作为特征提取部分,较多使用了3*3卷积核,在每次池化后操作后把通道数翻倍。网络使用了全局平均池化,把1*1卷积核置于3*3卷积核之间,用来压缩特征。也用了batch normalization稳定模型训练
  2. 最终得出的基础模型就是Darknet-19,包含19个卷积层,5个最大池化层,运算次数55.8亿次,top-1图片分类准确率72.9%,top-5准确率91.2%
  3. YOLOv2比VGG16更快,精度略低于VGG16

(2)缺点

  1. YOLOv2检测准确率不够,比SSD稍差
  2. 不擅长检测小物体
  3. 对近距离物体准确率较低

3)YOLOv3(2018)

YOLOv3总结了自己在YOLOv2的基础上做的一些尝试性改进,有的尝试取得了成功,而有的尝试并没有提升模型性能。其中有两个值得一提的亮点,一个是使用残差模型,进一步加深了网络结构;另一个是使用FPN架构实现多尺度检测。

① 改进

新网络结构:DarkNet-53;

用逻辑回归替代softmax作为分类器;

融合FPN(特征金字塔网络),实现多尺度检测。

  • 模型详细介绍见:待补充

③ 效果

(1)兼顾速度与准确率。在COCO数据机上,mAP指标与SSD模型相当,但速度提高了3倍;mAP指标比RetinaNet模型差些,但速度要高3.8倍。

(2)小目标检测有所提升,但中等和更大尺寸的物体上的表现相对较差。

当然,YOLOv3也有些失败的尝试,并未起到有效作用,请自行查阅原始论文。

四、目标检测应用

人脸检测:智能门控、员工考勤签到;智慧超市、人脸支付;车站、机场实名认证;公共安全:逃犯抓捕、走失人员检测

行人检测:智能辅助驾驶、智能监控、暴恐检测(根据面相识别暴恐倾向)、移动侦测、区域入侵检测、安全帽/安全带检测

车辆检测:自动驾驶;违章查询、关键通道检测;广告检测(检测广告中的车辆类型,弹出链接)

遥感检测:大地遥感,如土地使用、公路、水渠、河流监控

其他:农作物监控、军事检测等

五、目标检测数据集

(1)PASCAL VOC

VOC数据集是目标检测经常用的一个数据集,自2005年起每年举办一次比赛,最开始只有4类,到2007年扩充为20个类,共有两个常用的版本:2007和2012。学术界常用5k的train/val 2007和16k的train/val 2012作为训练集,test 2007作为测试集,用10k的train/val 2007+test 2007和16k的train/val 2012作为训练集,test2012作为测试集,分别汇报结果。

(2)MS COCO

COCO数据集是微软团队发布的一个可以用来图像recognition+segmentation+captioning 数据集,该数据集收集了大量包含常见物体的日常场景图片,并提供像素级的实例标注以更精确地评估检测和分割算法的效果,致力于推动场景理解的研究进展。依托这一数据集,每年举办一次比赛,现已涵盖检测、分割、关键点识别、注释等机器视觉的中心任务,是继ImageNet Challenge以来最有影响力的学术竞赛之一。

相比ImageNet,COCO更加偏好目标与其场景共同出现的图片,即non-iconic images。这样的图片能够反映视觉上的语义,更符合图像理解的任务要求。而相对的iconic images则更适合浅语义的图像分类等任务。

COCO的检测任务共含有80个类,在2014年发布的数据规模分train/val/test分别为80k/40k/40k,学术界较为通用的划分是使用train和35k的val子集作为训练集(trainval35k),使用剩余的val作为测试集(minival),同时向官方的evaluation server提交结果(test-dev)。除此之外,COCO官方也保留一部分test数据作为比赛的评测集。

(3)Google Open Image

Open Image是谷歌团队发布的数据集。最新发布的Open Images V4包含190万图像、600个种类,1540万个bounding-box标注,是当前最大的带物体位置标注信息的数据集。这些边界框大部分都是由专业注释人员手动绘制的,确保了它们的准确性和一致性。另外,这些图像是非常多样化的,并且通常包含有多个对象的复杂场景(平均每个图像 8 个)。

(4)ImageNet

ImageNet是一个计算机视觉系统识别项目, 是目前世界上图像识别最大的数据库。ImageNet是美国斯坦福的计算机科学家,模拟人类的识别系统建立的。能够从图片识别物体。ImageNet数据集文档详细,有专门的团队维护,使用非常方便,在计算机视觉领域研究论文中应用非常广,几乎成为了目前深度学习图像领域算法性能检验的“标准”数据集。ImageNet数据集有1400多万幅图片,涵盖2万多个类别;其中有超过百万的图片有明确的类别标注和图像中物体位置的标注。

六、目标检测常用标注工具

(1)LabelImg

1)LabelImg 是一款开源的图像标注工具,标签可用于分类和目标检测,它是用 Python 编写的,并使用Qt作为其图形界面,简单好用。注释以 PASCAL VOC 格式保存为 XML 文件,这是 ImageNet 使用的格式。 此外,它还支持 COCO 数据集格式。

2)安装方法:

前置条件:安装Python3以上版本,安装pyqt5

 第一步:下载安装包

 第二步:使用Pycharm打开项目,运行labelImg.py文件;或直接运行labelImg.py文件

3)常见错误处理:

① 报错:ModuleNotFoundError: No module named ‘libs.resources’

处理方式:

将python下scripts添加到环境变量path中

在labelImg目录下执行命令:pyrcc5 -o resources.py resources.qrc

将生成的resources.py拷贝到labelImg/libs/下

执行labelImg.py程序

(2)Labelme

labelme 是一款开源的图像/视频标注工具,标签可用于目标检测、分割和分类。灵感是来自于 MIT 开源的一款标注工具 Labelme。Labelme具有的特点是:

  1. 支持图像的标注的组件有:矩形框,多边形,圆,线,点(rectangle, polygons, circle, lines, points)
  2. 支持视频标注
  3. GUI 自定义
  4. 支持导出 VOC 格式用于 semantic/instance segmentation
  5. 支出导出 COCO 格式用于 instance segmentation

(3)Labelbox

Labelbox 是一家为机器学习应用程序创建、管理和维护数据集的服务提供商,其中包含一款部分免费的数据标签工具,包含图像分类和分割,文本,音频和视频注释的接口,其中图像视频标注具有的功能如下:

  1. 可用于标注的组件有:矩形框,多边形,线,点,画笔,超像素等(bounding box, polygons, lines, points,brush, subpixels)
  2. 标签可用于分类,分割,目标检测等
  3. 以 JSON / CSV / WKT / COCO / Pascal VOC 等格式导出数据
  4. 支持 Tiled Imagery (Maps)
  5. 支持视频标注 (快要更新)

(4)RectLabel

RectLabel 是一款在线免费图像标注工具,标签可用于目标检测、分割和分类。具有的功能或特点:

  1. 可用的组件:矩形框,多边形,三次贝塞尔曲线,直线和点,画笔,超像素
  2. 可只标记整张图像而不绘制
  3. 可使用画笔和超像素
  4. 导出为YOLO,KITTI,COCO JSON和CSV格式
  5. 以PASCAL VOC XML格式读写
  6. 使用Core ML模型自动标记图像
  7. 将视频转换为图像帧

(5)CVAT

CVAT 是一款开源的基于网络的交互式视频/图像标注工具,是对加州视频标注工具(Video Annotation Tool) 项目的重新设计和实现。OpenCV团队正在使用该工具来标注不同属性的数百万个对象,许多 UI 和 UX 的决策都基于专业数据标注团队的反馈。具有的功能

关键帧之间的边界框插值;自动标注(使用TensorFlow OD API 和 Intel OpenVINO IR格式的深度学习模型)

(6)VIA

VGG Image Annotator(VIA)是一款简单独立的手动注释软件,适用于图像,音频和视频。 VIA 在 Web 浏览器中运行,不需要任何安装或设置。 页面可在大多数现代Web浏览器中作为离线应用程序运行。

支持标注的区域组件有:矩形,圆形,椭圆形,多边形,点和折线

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2160750.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Linux 报错】“userdel: user xxxx is currently used by process xxx”

问题产生的原因: 多个用户后嵌套登陆导致删除某用户时,这个用户还没退出导致无法删除的问题。 例如:你在普通用户 A 的账户下,切换超级用户 root 执行删除普通用户 A 的账户,此时普通用户 A还在当前进程中运行&#…

管理员工绩效的 7 个最佳策略

管理员工绩效的 7 个最佳策略 您可以为您的公司做很多事情——伟大的想法、创新的产品和尖端技术。但归根结底,如果你想让你的组织取得成功,你需要一个高绩效的文化,拥有高绩效的员工。 赋予员工高水平绩效的最佳方式之一是通过员工绩效管理…

计算机的错误计算(一百零二)

摘要 探讨 的计算精度问题。 从计算机的错误计算(九十九)可知, 在IEEE 754-2019的列表中。因此,有必要分析其计算准确度。 例1. 已知 计算 若利用 Python的SciPy库中函数计算,则有: 若用Java的pow函…

Java设计模式全面解析

23大设计模式(即软件设计中的24种常用设计模式)源自《设计模式:可复用面向对象软件的基础》一书,由四位作者(Erich Gamma、Richard Helm、Ralph Johnson、John Vlissides)提出,通常也被称为“Go…

Java — LeetCode 面试经典150题(一)

双指针 125.验证回文串 题目 如果在将所有大写字符转换为小写字符、并移除所有非字母数字字符之后,短语正着读和反着读都一样。则可以认为该短语是一个 回文串 。 字母和数字都属于字母数字字符。 给你一个字符串 s,如果它是 回文串 ,返回…

代码随想录算法day39 | 动态规划算法part12 | 115.不同的子序列,583. 两个字符串的删除操作,72. 编辑距离

115.不同的子序列 相对于 392.判断子序列,本题有难度了,感受一下本题和 392.判断子序列 的区别。 力扣题目链接(opens new window) 给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。 字符串的一个 子序列 是指&#xff…

企业如何选择合适的可观测产品

数字化进程的推进,使得不同企业对于数字化可观测产品提出了各种差异化的需求。本文先是具体分析了不同类型的企业对于可观测产品的直接需求和痛点,描述了可观测产品的所能提供的更丰富的实际应用场景。紧接着从开源产品,国外商业产品&#xf…

E33.【C语言】数据在内存中的存储练习集(未完)

1. 求下列代码的打印结果 #include <stdio.h> int main() {char a -1;signed char b -1;unsigned char c -1;printf("a%d,b%d,c%d", a, b, c);return 0; } 答案速查 分析 之前讲过,char在VS中默认为signed char,则a和b的打印结果应该是一样的 存储范围…

专属文生图助手——SD3+ComfyUI文生图部署步骤

SD3ComfyUI文生图部署步骤 我们使用DAMODEL来实现文生图的部署。 根据提供的操作步骤与代码段落&#xff0c;本文旨在介绍如何下载并部署 Stable Diffusion 3 模型&#xff0c;并通过 ComfyUI 架构实现基于 Web 界面的图像生成应用。本文将剖析各个步骤&#xff0c;并详细解释…

无人机之编程基础原理

无人机编程基础原理涉及多个方面&#xff0c;主要包括无人机的基本原理、飞行控制算法、编程语言及算法应用等。以下是对这些方面的详细阐述&#xff1a; 一、无人机基本原理 无人机的基本原理是理解其结构、飞行原理、传感器和控制系统等的基础。无人机通常由机身、动力系统&…

Linux网络之UDP与TCP协议详解

文章目录 UDP协议UDP协议数据报报头 TCP协议确认应答缓冲区 超时重传三次握手其他问题 四次挥手滑动窗口流量控制拥塞控制 UDP协议 前面我们只是说了UDP协议的用法,但是并没有涉及到UDP协议的原理 毕竟知道冰箱的用法和知道冰箱的原理是两个层级的事情 我们首先知道计算机网…

基于51单片机的自动清洗系统(自动洗衣机)

目录 一、主要功能 二、硬件资源 三、程序编程 四、实现现象 一、主要功能 基于AT89C52单片机&#xff0c;采用DS18B20温度传感器检测温度&#xff0c;通过LCD1602显示屏显示&#xff0c;并且按键 可以加减温度的上限&#xff1b; 点击清洗按键后&#xff0c;倒计时1分钟&…

61.【C语言】数据在内存中的存储

1.前置知识 整数在内存中以补码形式存储 有符号整数三种码均有符号位,数值位 正整数:原码反码补码 负整数:原码≠反码≠补码 2.解释 int arr[] {1,2,3,4,5}; VSx86Debug环境下,内存窗口输入&arr VSx64Debug环境下,内存窗口输入&arr 存放的顺序都一样,均是小端序…

探索组合模式:构建灵活的层次结构

组合模式是一种结构型设计模式&#xff0c;它允许你将对象组合成树形结构来表示“部分-整体”的层次结构。组合模式使得客户可以以一致的方式处理单个对象和组合对象。 一&#xff0c;组合模式的结构 组合模式主要包含以下几个部分&#xff1a; 组件&#xff08;Component&a…

Java练习-----时间工具类(JDK8之后)

目录 LocalDate/LocalTime/LocalDateTime类 ZoneDateTime和ZoneId Instant类 DateTimeFormatter类 &#xff1a;解析格式化时间 LocalDate/LocalTime/LocalDateTime类 package crrc.studytest1;import java.time.Duration; import java.time.LocalDateTime;public class Du…

虚拟机屏幕分辨率自适应VMWare窗口大小

文章目录 环境问题解决办法其它虚拟机和主机间复制粘贴 参考 环境 Windows 11 家庭中文版VMWare Workstation 17 ProUbuntu 24.04.1 问题 虚拟机的屏幕大小&#xff0c;是固定的。如下图&#xff0c;设置的分辨率是800*600&#xff0c;效果如下&#xff1a; 可见&#xff0c…

统信服务器操作系统ade版【iostat】命令详解

统信服务器操作系统全版本iostat 安装、命令格式和命令参数 文章目录 功能概述功能介绍1.iostat安装2.iostat命令格式3.iostat命令参数 功能概述 iostat主要用与报告CPU统计信息和设备分区的io统计信息&#xff0c;iostat首次运行时显示自系统启动开始的各项统计信息&#xff…

1.5 计算机网络的分层结构

欢迎大家订阅【计算机网络】学习专栏&#xff0c;开启你的计算机网络学习之旅&#xff01; 文章目录 前言1 分层设计2 网络体系结构2.1 基本概述2.2 常见的三种网络体系结构 3 各层之间的关系3.1 水平关系3.2 垂直关系 4 数据传输过程4.1 水平视角4.2 垂直视角 前言 在当今数字…

Ubuntu22.04安装GNSS数据处理软件GAMIT/GLOBK

由于微信公众号改变了推送规则&#xff0c;为了每次新的推送可以在第一时间出现在您的订阅列表中&#xff0c;记得将本公众号设为星标或置顶喔~ 手把手带您安装gamit/globk软件~ &#x1f33f;前言 受朋友之托&#xff0c;出一期Ubuntu22.04安装GNSS数据处理软件——gamit软件…

Web端云剪辑解决方案,智能字幕,精准识别语音字幕,一键上轨编辑

无论是企业宣传、个人Vlog、在线教育还是直播带货&#xff0c;高质量的视频内容都是吸引眼球、传递价值的关键。然而&#xff0c;面对繁琐的剪辑流程、高昂的时间成本以及技术门槛&#xff0c;许多创作者往往望而却步。正是洞察到这一市场需求&#xff0c;美摄科技携其创新的We…