写在前面:
🌟 欢迎光临 清流君 的博客小天地,这里是我分享技术与心得的温馨角落。📝
个人主页:清流君_CSDN博客,期待与您一同探索 移动机器人 领域的无限可能。
🔍 本文系 清流君 原创之作,荣幸在CSDN首发🐒
若您觉得内容有价值,还请评论告知一声,以便更多人受益。
转载请注明出处,尊重原创,从我做起。
👍 点赞、评论、收藏,三连走一波,让我们一起养成好习惯😜
在这里,您将收获的不只是技术干货,还有思维的火花!
📚 系列专栏:【运动控制】系列,带您深入浅出,领略控制之美。🖊
愿我的分享能为您带来启迪,如有不足,敬请指正,让我们共同学习,交流进步!
🎭 人生如戏,我们并非能选择舞台和剧本,但我们可以选择如何演绎 🌟
感谢您的支持与关注,让我们一起在知识的海洋中砥砺前行~~~
文章目录
- 引言
- 一、纯跟踪算法简介
- 二、自行车模型概述
- 三、纯跟踪算法理论基础
- 3.1 算法基本思想
- 3.2 几何关系推导
- 四、纯跟踪算法实现步骤
- 五、纯跟踪算法优化
- 5.1 前视距离对性能的影响及优化策略
- 5.2 根据速度缩放前视距离
- 5.3 比例系数的影响及调整
- 5.4 限制值范围
- 5.5 高度鲁棒性
- 六、纯跟综算法的难点与局限性
- 6.1 最佳前视距离的选择
- 6.2 路径追踪与稳定性的平衡
- 6.3 高速下前视距离的调整与稳态误差
- 七、编程实现
- 7.1 pure_pursuit.param.yaml
- 7.2 pure_pursuit_lateral_controller.cpp
- 7.3 pure_pursuit.cpp
- 7.4 planning_utils.cpp
- 八、总结
- 参考资料
引言
在自动驾驶领域,Pure Pursuit纯跟踪算法作为一种高效的车道保持技术,备受关注。本文将带您深入解析Autoware开源项目中Pure Pursuit算法的实现细节,揭秘自动驾驶车辆如何精确追踪参考轨迹。通过讲解算法原理、实现步骤及优化策略,探索这一关键技术的精髓。
一、纯跟踪算法简介
目前主流方法有两类:
- 基于几何的方法
- 基于模型的方法
本篇博客介绍基于几何方法的 Pure Pursuit 纯跟踪算法。
Pure Pursuit 纯追踪算法是一种广泛使用的基于几何的追踪方法,建立在自行车模型和阿曼转向几何基础上,在低速状态下有比较好的效果。
二、自行车模型概述
在讲纯追踪算法之前,先回顾一下自行车模型。
自行车模型是将四轮简化成两轮的模型,假设车只在平面上行驶,最大好处是简化了前轮转向角和后轮轨迹曲率之间的关系,根据阿克曼转向几何关系,可以建立车辆前轮转向角和后轮轨迹曲率之间的关系。
假设前轮的转角为
δ
\delta
δ,后轮滑过的半径为
R
R
R,有如下关系:
tan
δ
=
L
R
\tan \delta = \frac { L } { R }
tanδ=RL其中,
δ
\delta
δ 是前轮转向角,
L
L
L 是轴距,
R
R
R 是在给定转向角后,后轮所遵循的圆半径。此公式能在低速场景下对车辆的运动做简单估计。
三、纯跟踪算法理论基础
3.1 算法基本思想
纯跟踪算法最基本的思想就是参考人类驾驶员的行为,以车的后轮轴心为基点,通过控制前轮转向,使得车沿着一条经过预瞄点的圆弧行驶。即 Pure Pursuit 算法以后轮轴心为切点,纵向车身为切线,通过控制前轮转角,使得车辆沿着一条通过目标点的圆弧行驶。
由这样的定义可以看出,首先要选择预瞄点, 预瞄点是距离后轮中心 l d l_d ld长度的路径点, l d l_d ld 为前视距离。
3.2 几何关系推导
当路径是这样时,连接目标点和后轮中心,设目标点是 G G G,转向中心是 O O O,后轮的中心是 B B B,可以构建出三角形 Δ O B G \Delta OBG ΔOBG:
由于知道目标点和车身后轮方向,即目标点方向和当前航向角的夹角为
α
\alpha
α。而实际是切线,所以可得到
∠
O
B
G
=
π
2
−
α
\angle OBG=\frac{\pi}{2}-\alpha
∠OBG=2π−α ,因为
Δ
O
B
G
\Delta OBG
ΔOBG 是等腰三角形。所以两个底角相等,都等于
π
2
−
α
\frac{\pi}{2}-\alpha
2π−α,由于是三角形,所以顶点角度就是
2
α
2 \alpha
2α 。
下面来看一下如何根据几何关系来找到前轮转角 δ \delta δ 和目标点的关系。
看一下三角形
Δ
O
B
G
\Delta OBG
ΔOBG,刚才讲过
B
G
‾
=
l
d
\overline{BG}=l_d
BG=ld,所以根据三角形正弦定理,可得:
l
d
sin
(
2
α
)
=
R
sin
(
π
2
−
α
)
\frac { l _ { d } } { \sin ( 2 \alpha ) } = \frac { R } { \sin ( \frac { \pi } { 2 } - \alpha ) }
sin(2α)ld=sin(2π−α)R由三角函数就可以把这两项展开,得到:
l
d
2
sin
(
α
)
cos
(
α
)
=
R
cos
(
α
)
\frac { l _ { d } } { 2 \sin ( \alpha ) \cos ( \alpha ) } = \frac { R } { \cos ( \alpha ) }
2sin(α)cos(α)ld=cos(α)R这时发现有两个
cos
α
\cos \alpha
cosα,相互抵消,得到:
l
d
sin
(
α
)
=
2
R
\frac { l _ { d } } { \sin ( \alpha ) } = 2 R
sin(α)ld=2R这样得到
(
1
)
(1)
(1) 式
1
R
=
2
sin
(
α
)
l
d
(1)
\frac { 1 } { R } = \frac { 2 \sin ( \alpha ) } { l _ { d } }\tag{1}
R1=ld2sin(α)(1)建立了转弯半径与目标点方向和当前航向角的夹角之间的关系。
根据阿克曼转向几何可得:
tan
δ
=
L
R
⇒
δ
=
tan
−
1
(
L
R
)
(2)
\tan \delta = \frac { L } { R } \Rightarrow \delta = \tan ^ { - 1 } ( \frac { L } { R } )\tag{2}
tanδ=RL⇒δ=tan−1(RL)(2)根据
(
1
)
(1)
(1) 式
(
2
)
(2)
(2) 式可得:
δ
(
t
)
=
tan
−
1
(
2
L
sin
(
α
(
t
)
)
l
d
)
(3)
\delta ( t ) = \tan ^ { - 1 } ( \frac { 2 L \sin ( \alpha ( t ) ) } { l _ { d } } )\tag{3}
δ(t)=tan−1(ld2Lsin(α(t)))(3)
这时看下面的三角形 Δ B G A \Delta BGA ΔBGA:
可得
sin
(
α
)
=
e
l
d
l
d
\sin ( \alpha ) = \frac { e _ { l_d } } { l _ { d } }
sin(α)=ldeld设
A
G
=
e
l
d
AG =e_{l_d}
AG=eld 为横向误差,把
sin
α
\sin\alpha
sinα 带到
(
3
)
(3)
(3) 式可得:
δ
(
t
)
=
tan
−
1
(
2
L
l
d
2
e
l
d
(
t
)
)
(4)
\delta ( t ) = \tan ^ { - 1 } ( \frac { 2 L } { l _ { d } ^ { 2 } } e _ { l _ { d } } ( t ) )\tag{4}
δ(t)=tan−1(ld22Leld(t))(4) 这时可以看到, Pure Pursuit 算法的本质就是对前视横向误差
e
l
d
e_{l_d}
eld 以
2
L
l
d
2
\frac { 2 L } { l _ { d } ^ { 2 } }
ld22L 为比例系数的比例控制器。这样就建立起了转向角
δ
\delta
δ 和前视距离
l
d
l_d
ld,还有车辆轴距
L
L
L 以及目标点方向和当前航向角夹角
α
\alpha
α 之间的关系。
四、纯跟踪算法实现步骤
下面介绍 Pure Pursuit 算法的实现步骤。
S t e p 1 Step\ 1 Step 1:确定车辆自身位置,可以通过定位模块直接拿到车辆的实时位置。
S t e p 2 Step\ 2 Step 2:找出在规划路径中距离车辆最近的点。
S t e p 3 Step\ 3 Step 3:找到预瞄点。首先要定义预瞄距离 l d l_d ld,然后以车的后轮中心为圆心, l d l_d ld 为半径画圆弧,在规划路径上找到距离车辆后轮中心 l d l_d ld 距离的交点,交点在不同路径中可能不只一个。
比如在做非常激进的变道场景中, 路径是这样:
假如车在这样的位置,如果前视距离为 l d l_d ld,可能出现两个交点,在这种情况下需要先找离车最近的路径点,选择比较靠近车辆的目标点为最终的预瞄点。
S t e p 4 Step\ 4 Step 4:把预瞄点转化到车身坐标系下,方便计算。
S t e p 5 Step\ 5 Step 5:用刚才推出来 Pure Pursuit 算法计算公式算出到达目标点所需的转向角,并操纵车辆的转向运动。
S t e p 6 Step\ 6 Step 6:根据单位时间内车辆的运动,更新车辆的实时状态
这就是 Pure Pursuit 算法的基本步骤。
五、纯跟踪算法优化
从前面的推导中,可以看到影响 Pure Pursuit 算法性能最重要的量就是 l d l_d ld:
δ ( t ) = tan − 1 ( 2 L sin ( α ( t ) ) l d ) \delta ( t ) = \tan ^ { - 1 } ( \frac { 2 L \sin ( \alpha ( t ) ) } { l _d } ) δ(t)=tan−1(ld2Lsin(α(t))) 直接影响车的转向角大小,从而影响车辆对轨迹的追踪能力。纯跟踪算法优化主要是对前视距离 l d l_d ld 的选择。
5.1 前视距离对性能的影响及优化策略
较短的前视距离能提供更精确的跟踪,而较长的距离则能提供更平滑的跟踪。
通常选择小一点的 l d l_d ld,追踪会更加准确,预瞄点更靠近车辆本身,所以更好追踪。但这样就需要不断地更换目标点,导致系统的稳定性也会随之降低。而如果大一点的目标点,可以跟踪更长时间,表现更稳定,但也牺牲掉追踪的准确性。
5.2 根据速度缩放前视距离
还有一种就是比较常用的前视距离表达方式,就是把
l
d
l_d
ld 和速度相关联,随速度增加而增大前视距离:
l
d
=
k
v
x
l_d=kv_x
ld=kvx 随速度增加,
l
d
l_d
ld 也会越大,这样就会提高 Pure Pursuit 算法适应不同速度的跟踪能力。
5.3 比例系数的影响及调整
k k k 值过小会导致不稳定,而 k k k 值过大会导致跟踪效果不佳。
δ ( t ) = tan − 1 ( 2 L sin ( α ( t ) ) l d ) = tan − 1 ( 2 L sin ( α ( t ) ) k v x ( t ) ) \delta ( t ) = \tan ^ { - 1 } ( \frac { 2 L \sin ( \alpha ( t ) ) } { l _d } ) = \tan ^ { - 1 } ( \frac { 2 L \sin ( \alpha ( t ) ) } { kv _ { x } ( t ) } ) δ(t)=tan−1(ld2Lsin(α(t)))=tan−1(kvx(t)2Lsin(α(t))) 因为 k k k 在前轮转角表达式的分母上,所以如果 k k k 太小,会造成不稳定;如果 k k k 太大,会牺牲掉追踪的准确度,导致跟踪效果不佳。
5.4 限制值范围
可设置最大最小的值范围,使得来确保追踪的准确性和车辆的稳定性。
5.5 高度鲁棒性
由于 Pure Pursuit 算法本身对路径的曲率没有直接的关系,即可以看出来Pure Pursuit 算法公式里完全没有和参考路径的关系,导致算法对路径的连续性要求并不高,所以 可以很好的处理不连续路径的轨迹追踪问题。
六、纯跟综算法的难点与局限性
Pure Pursuit 纯跟踪算法是简单实用的控制器,但也正是由于它的简单性,给方法本身带来了难点和局限性。
6.1 最佳前视距离的选择
将前视距离 l d l_d ld 和速度相关联是常用方法,但车辆追踪轨迹完全依靠预瞄点,而不和路径本身的曲率相关联。
由于算法本身的原因,在曲线路径中,当车接近目标点时,哪怕是以很慢的速度,但是距离只要在预瞄点范围之内,就会马上更新到下个预瞄点,这样就车还没到达预瞄点,在靠近预描点时,车就更换了预瞄点,导致车辆对曲线路径无法做到 100 100 100% 的追踪效果,很难保证非常小的跟踪误差。当然在直线的情况下没有问题,因为当在跟踪直线时,一般经过几次预瞄点的更新就可以很好得跟踪直线。
所以可以在在选择前视距离 l d l_d ld 时,把路径的曲率信息也考虑进来,更进一步把横向误差也考虑进来,这样会进一步提高 Pure Pursuit 算法的鲁棒性。
6.2 路径追踪与稳定性的平衡
在特定路径上,不要过度追求完美的追踪效果。因为在曲线路径上,小车永远都是在看前方的轨迹,除非轨迹是一条直线,否则轨迹误差是永远存在。
改变前视距离只是改变车辆行驶的曲率半径,可以补偿因车辆转向不足而增加的(与运动学自行车模型相比)半径。
如果为了确保稳定性而进行调整,由于前视距离较长而在路径上走弯路,就会大大降低追踪的准确度。
6.3 高速下前视距离的调整与稳态误差
在高速情况下,前视距离 l d l_d ld 增加,误差也会变大,即使不考虑速度因素,在速度逐渐增加时,也会增加更新前视距离的频率,导致还没等到小车真正跟踪到目标点,就已经跳到第二个目标点了,这样也会导致曲线的稳态误差变大。
七、编程实现
在自动驾驶开源代码 autoware 中,详见:
autoware.universe/tree/main/control/pure_pursuit
纯跟踪算法 Pure Pursuit 的实现比较简单,距离工程化应用还有一定差距,但对于算法的学习已经足够了,下面详细讲解一下 Autoware 的纯跟踪算法实现。
下面是整个纯跟踪算法的目录树,可以看到并不复杂。
其中最重要的几个文件是:
pure_pursuit.param.yaml
pure_pursuit_lateral_controller.cpp
pure_pursuit.cpp
planning_utils.cpp
看懂这几个文件,整个纯跟踪算法就差不多掌握了,这也是学习 autoware 纯跟踪代码的顺序。
7.1 pure_pursuit.param.yaml
pure_pursuit.param.yaml
里都是纯跟踪算法用到的一些参数,包括用于计算预瞄距离
l
d
l_d
ld 的各个系数和最小最大预瞄距离。
唯一点需要说明的是,这里给出计算预瞄距离的系数太过单一,实际工程化应该通过查表得到各个系数,具体代码如下:
/**:
ros__parameters:
ld_velocity_ratio: 2.4
ld_lateral_error_ratio: 3.6
ld_curvature_ratio: 120.0
long_ld_lateral_error_threshold: 0.5
min_lookahead_distance: 4.35
max_lookahead_distance: 15.0
converged_steer_rad: 0.1
reverse_min_lookahead_distance: 7.0
prediction_ds: 0.3
prediction_distance_length: 21.0
resampling_ds: 0.1
curvature_calculation_distance: 4.0
enable_path_smoothing: false
path_filter_moving_ave_num: 25
7.2 pure_pursuit_lateral_controller.cpp
#include "pure_pursuit/pure_pursuit_lateral_controller.hpp"
#include "pure_pursuit/pure_pursuit_viz.hpp"
#include "pure_pursuit/util/planning_utils.hpp"
#include "pure_pursuit/util/tf_utils.hpp"
#include <vehicle_info_util/vehicle_info_util.hpp>
#include <algorithm>
#include <memory>
#include <utility>
namespace
{
enum TYPE {
VEL_LD = 0,
CURVATURE_LD = 1,
LATERAL_ERROR_LD = 2,
TOTAL_LD = 3,
CURVATURE = 4,
LATERAL_ERROR = 5,
VELOCITY = 6,
SIZE // this is the number of enum elements
};
} // namespace
namespace pure_pursuit
{
PurePursuitLateralController::PurePursuitLateralController(rclcpp::Node & node)
: clock_(node.get_clock()),
logger_(node.get_logger().get_child("lateral_controller")),
tf_buffer_(clock_),
tf_listener_(tf_buffer_)
{
pure_pursuit_ = std::make_unique<PurePursuit>();
// Vehicle Parameters
const auto vehicle_info = vehicle_info_util::VehicleInfoUtil(node).getVehicleInfo();
param_.wheel_base = vehicle_info.wheel_base_m;
param_.max_steering_angle = vehicle_info.max_steer_angle_rad;
// Algorithm Parameters
param_.ld_velocity_ratio = node.declare_parameter<double>("ld_velocity_ratio");
param_.ld_lateral_error_ratio = node.declare_parameter<double>("ld_lateral_error_ratio");
param_.ld_curvature_ratio = node.declare_parameter<double>("ld_curvature_ratio");
param_.long_ld_lateral_error_threshold = node.declare_parameter<double>("long_ld_lateral_error_threshold");
param_.min_lookahead_distance = node.declare_parameter<double>("min_lookahead_distance");
param_.max_lookahead_distance = node.declare_parameter<double>("max_lookahead_distance");
param_.reverse_min_lookahead_distance = node.declare_parameter<double>("reverse_min_lookahead_distance");
param_.converged_steer_rad_ = node.declare_parameter<double>("converged_steer_rad");
param_.prediction_ds = node.declare_parameter<double>("prediction_ds");
param_.prediction_distance_length = node.declare_parameter<double>("prediction_distance_length");
param_.resampling_ds = node.declare_parameter<double>("resampling_ds");
param_.curvature_calculation_distance = node.declare_parameter<double>("curvature_calculation_distance");
param_.enable_path_smoothing = node.declare_parameter<bool>("enable_path_smoothing");
param_.path_filter_moving_ave_num = node.declare_parameter<int64_t>("path_filter_moving_ave_num");
// Debug Publishers
pub_debug_marker_ =
node.create_publisher<visualization_msgs::msg::MarkerArray>("~/debug/markers", 0);
pub_debug_values_ = node.create_publisher<tier4_debug_msgs::msg::Float32MultiArrayStamped>(
"~/debug/ld_outputs", rclcpp::QoS{1});
// Publish predicted trajectory
pub_predicted_trajectory_ = node.create_publisher<autoware_auto_planning_msgs::msg::Trajectory>(
"~/output/predicted_trajectory", 1);
}
double PurePursuitLateralController::calcLookaheadDistance(
const double lateral_error, const double curvature, const double velocity, const double min_ld,
const bool is_control_cmd)
{
const double vel_ld = abs(param_.ld_velocity_ratio * velocity); // k1*v
const double curvature_ld = -abs(param_.ld_curvature_ratio * curvature); // -k2*kappa
double lateral_error_ld = 0.0;
if (abs(lateral_error) >= param_.long_ld_lateral_error_threshold) {
// If lateral error is higher than threshold, we should make ld larger to prevent entering the
// road with high heading error.
// 如果横向误差高于阈值,我们应该使ld更大,以防止进入具有高航向误差的道路。
lateral_error_ld = abs(param_.ld_lateral_error_ratio * lateral_error); // k3*Err_y
}
// 总的预瞄距离,限幅
const double total_ld =
std::clamp(vel_ld + curvature_ld + lateral_error_ld, min_ld, param_.max_lookahead_distance);
auto pubDebugValues = [&]() {
tier4_debug_msgs::msg::Float32MultiArrayStamped debug_msg{};
debug_msg.data.resize(TYPE::SIZE);
debug_msg.data.at(TYPE::VEL_LD) = static_cast<float>(vel_ld);
debug_msg.data.at(TYPE::CURVATURE_LD) = static_cast<float>(curvature_ld);
debug_msg.data.at(TYPE::LATERAL_ERROR_LD) = static_cast<float>(lateral_error_ld);
debug_msg.data.at(TYPE::TOTAL_LD) = static_cast<float>(total_ld);
debug_msg.data.at(TYPE::VELOCITY) = static_cast<float>(velocity);
debug_msg.data.at(TYPE::CURVATURE) = static_cast<float>(curvature);
debug_msg.data.at(TYPE::LATERAL_ERROR) = static_cast<float>(lateral_error);
debug_msg.stamp = clock_->now();
pub_debug_values_->publish(debug_msg);
};
if (is_control_cmd) {
pubDebugValues();
}
return total_ld;
}
TrajectoryPoint PurePursuitLateralController::calcNextPose(
const double ds, TrajectoryPoint & point, AckermannLateralCommand cmd) const
{
geometry_msgs::msg::Transform transform;
transform.translation = tier4_autoware_utils::createTranslation(ds, 0.0, 0.0);
transform.rotation =
planning_utils::getQuaternionFromYaw(((tan(cmd.steering_tire_angle) * ds) / param_.wheel_base));
TrajectoryPoint output_p;
tf2::Transform tf_pose;
tf2::Transform tf_offset;
tf2::fromMsg(transform, tf_offset);
tf2::fromMsg(point.pose, tf_pose);
tf2::toMsg(tf_pose * tf_offset, output_p.pose);
return output_p;
}
void PurePursuitLateralController::setResampledTrajectory()
{
// Interpolate with constant interval distance.
std::vector<double> out_arclength;
// 将原始轨迹转换为轨迹点数组
const auto input_tp_array = motion_utils::convertToTrajectoryPointArray(trajectory_);
const auto traj_length = motion_utils::calcArcLength(input_tp_array);
// 以恒定的间隔距离进行插值
for (double s = 0; s < traj_length; s += param_.resampling_ds) {
out_arclength.push_back(s);
}
trajectory_resampled_ = std::make_shared<autoware_auto_planning_msgs::msg::Trajectory>(
motion_utils::resampleTrajectory(
motion_utils::convertToTrajectory(input_tp_array), out_arclength));
// 将重新采样的轨迹的最后一个点替换为原始轨迹的最后一个点,以保持轨迹的连续性。
trajectory_resampled_->points.back() = trajectory_.points.back();
// 将重新采样的轨迹的头部信息设置为与原始轨迹相同。
trajectory_resampled_->header = trajectory_.header;
output_tp_array_ = motion_utils::convertToTrajectoryPointArray(*trajectory_resampled_);
}
double PurePursuitLateralController::calcCurvature(const size_t closest_idx)
{
// Calculate current curvature
const size_t idx_dist = static_cast<size_t>(
std::max(static_cast<int>((param_.curvature_calculation_distance) / param_.resampling_ds), 1));
// Find the points in trajectory to calculate curvature
size_t next_idx = trajectory_resampled_->points.size() - 1;
size_t prev_idx = 0;
// 根据最近点的索引进行判断,确定计算曲率时的起点和终点的索引
if (static_cast<size_t>(closest_idx) >= idx_dist) {
prev_idx = closest_idx - idx_dist;
} else {
// return zero curvature when backward distance is not long enough in the trajectory
return 0.0;
}
// 判断是否存在足够的轨迹点进行曲率计算,确定计算曲率时的起点和终点的索引
if (trajectory_resampled_->points.size() - 1 >= closest_idx + idx_dist) {
next_idx = closest_idx + idx_dist;
} else {
// return zero curvature when forward distance is not long enough in the trajectory
return 0.0;
}
// TODO(k.sugahara): shift the center point of the curvature calculation to allow sufficient
// distance, because if sufficient distance cannot be obtained in front or behind, the curvature
// will be zero in the current implementation.
// Calculate curvature assuming the trajectory points interval is constant
double current_curvature = 0.0;
try {
// 根据给定的三个轨迹点,计算曲率
current_curvature = tier4_autoware_utils::calcCurvature(
tier4_autoware_utils::getPoint(trajectory_resampled_->points.at(prev_idx)),
tier4_autoware_utils::getPoint(trajectory_resampled_->points.at(closest_idx)),
tier4_autoware_utils::getPoint(trajectory_resampled_->points.at(next_idx)));
} catch (std::exception const & e) {
// ...code that handles the error...
RCLCPP_WARN(rclcpp::get_logger("pure_pursuit"), "%s", e.what());
current_curvature = 0.0;
}
return current_curvature;
}
void PurePursuitLateralController::averageFilterTrajectory(
autoware_auto_planning_msgs::msg::Trajectory & u)
{
if (static_cast<int>(u.points.size()) <= 2 * param_.path_filter_moving_ave_num) {
RCLCPP_ERROR(logger_, "Cannot smooth path! Trajectory size is too low!");
return;
}
autoware_auto_planning_msgs::msg::Trajectory filtered_trajectory(u);
for (int64_t i = 0; i < static_cast<int64_t>(u.points.size()); ++i) {
TrajectoryPoint tmp{};
int64_t num_tmp = param_.path_filter_moving_ave_num;
int64_t count = 0;
double yaw = 0.0;
if (i - num_tmp < 0) {
num_tmp = i;
}
if (i + num_tmp > static_cast<int64_t>(u.points.size()) - 1) {
num_tmp = static_cast<int64_t>(u.points.size()) - i - 1;
}
for (int64_t j = -num_tmp; j <= num_tmp; ++j) {
const auto & p = u.points.at(static_cast<size_t>(i + j));
tmp.pose.position.x += p.pose.position.x;
tmp.pose.position.y += p.pose.position.y;
tmp.pose.position.z += p.pose.position.z;
tmp.longitudinal_velocity_mps += p.longitudinal_velocity_mps;
tmp.acceleration_mps2 += p.acceleration_mps2;
tmp.front_wheel_angle_rad += p.front_wheel_angle_rad;
tmp.heading_rate_rps += p.heading_rate_rps;
yaw += tf2::getYaw(p.pose.orientation);
tmp.lateral_velocity_mps += p.lateral_velocity_mps;
tmp.rear_wheel_angle_rad += p.rear_wheel_angle_rad;
++count;
}
auto & p = filtered_trajectory.points.at(static_cast<size_t>(i));
p.pose.position.x = tmp.pose.position.x / count;
p.pose.position.y = tmp.pose.position.y / count;
p.pose.position.z = tmp.pose.position.z / count;
p.longitudinal_velocity_mps = tmp.longitudinal_velocity_mps / count;
p.acceleration_mps2 = tmp.acceleration_mps2 / count;
p.front_wheel_angle_rad = tmp.front_wheel_angle_rad / count;
p.heading_rate_rps = tmp.heading_rate_rps / count;
p.lateral_velocity_mps = tmp.lateral_velocity_mps / count;
p.rear_wheel_angle_rad = tmp.rear_wheel_angle_rad / count;
p.pose.orientation = pure_pursuit::planning_utils::getQuaternionFromYaw(yaw / count);
}
trajectory_resampled_ = std::make_shared<Trajectory>(filtered_trajectory);
}
boost::optional<Trajectory> PurePursuitLateralController::generatePredictedTrajectory()
{
const auto closest_idx_result =
motion_utils::findNearestIndex(output_tp_array_, current_odometry_.pose.pose, 3.0, M_PI_4);
if (!closest_idx_result) {
return boost::none;
}
const double remaining_distance = planning_utils::calcArcLengthFromWayPoint(
*trajectory_resampled_, *closest_idx_result, trajectory_resampled_->points.size() - 1);
const auto num_of_iteration = std::max(
static_cast<int>(std::ceil(
std::min(remaining_distance, param_.prediction_distance_length) / param_.prediction_ds)),
1);
Trajectory predicted_trajectory;
// Iterative prediction:
for (int i = 0; i < num_of_iteration; i++) {
if (i == 0) {
// For first point, use the odometry for velocity, and use the current_pose for prediction.
TrajectoryPoint p;
p.pose = current_odometry_.pose.pose;
p.longitudinal_velocity_mps = current_odometry_.twist.twist.linear.x;
predicted_trajectory.points.push_back(p);
const auto pp_output = calcTargetCurvature(true, predicted_trajectory.points.at(i).pose);
AckermannLateralCommand tmp_msg;
if (pp_output) {
tmp_msg = generateCtrlCmdMsg(pp_output->curvature);
predicted_trajectory.points.at(i).longitudinal_velocity_mps = pp_output->velocity;
} else {
RCLCPP_WARN_THROTTLE(logger_, *clock_, 5000, "failed to solve pure_pursuit for prediction");
tmp_msg = generateCtrlCmdMsg(0.0);
}
TrajectoryPoint p2;
p2 = calcNextPose(param_.prediction_ds, predicted_trajectory.points.at(i), tmp_msg);
predicted_trajectory.points.push_back(p2);
} else {
const auto pp_output = calcTargetCurvature(false, predicted_trajectory.points.at(i).pose);
AckermannLateralCommand tmp_msg;
if (pp_output) {
tmp_msg = generateCtrlCmdMsg(pp_output->curvature);
predicted_trajectory.points.at(i).longitudinal_velocity_mps = pp_output->velocity;
} else {
RCLCPP_WARN_THROTTLE(logger_, *clock_, 5000, "failed to solve pure_pursuit for prediction");
tmp_msg = generateCtrlCmdMsg(0.0);
}
predicted_trajectory.points.push_back(
calcNextPose(param_.prediction_ds, predicted_trajectory.points.at(i), tmp_msg));
}
}
// for last point
predicted_trajectory.points.back().longitudinal_velocity_mps = 0.0;
predicted_trajectory.header.frame_id = trajectory_resampled_->header.frame_id;
predicted_trajectory.header.stamp = trajectory_resampled_->header.stamp;
return predicted_trajectory;
}
bool PurePursuitLateralController::isReady([[maybe_unused]] const InputData & input_data)
{
return true;
}
LateralOutput PurePursuitLateralController::run(const InputData & input_data)
{
current_pose_ = input_data.current_odometry.pose.pose;
trajectory_ = input_data.current_trajectory;
current_odometry_ = input_data.current_odometry;
current_steering_ = input_data.current_steering;
// 通过固定间隔的方式重新采样原始轨迹,生成一条新的重新采样的轨迹
setResampledTrajectory();
if (param_.enable_path_smoothing) {
averageFilterTrajectory(*trajectory_resampled_);
}
// 计算纯跟踪控制转角
const auto cmd_msg = generateOutputControlCmd();
LateralOutput output;
output.control_cmd = cmd_msg;
// 计算的控制转角与当前方向盘转角之差的绝对值 < 0.1rad
output.sync_data.is_steer_converged = calcIsSteerConverged(cmd_msg);
// calculate predicted trajectory with iterative calculation
const auto predicted_trajectory = generatePredictedTrajectory();
if (!predicted_trajectory) {
RCLCPP_ERROR(logger_, "Failed to generate predicted trajectory.");
} else {
pub_predicted_trajectory_->publish(*predicted_trajectory);
}
return output;
}
bool PurePursuitLateralController::calcIsSteerConverged(const AckermannLateralCommand & cmd)
{
// 计算的控制转角与当前方向盘转角之差的绝对值 < 0.1rad
return std::abs(cmd.steering_tire_angle - current_steering_.steering_tire_angle) <
static_cast<float>(param_.converged_steer_rad_);
}
AckermannLateralCommand PurePursuitLateralController::generateOutputControlCmd()
{
// Generate the control command
// 调用纯跟踪算法,计算跟踪曲率半径
const auto pp_output = calcTargetCurvature(true, current_odometry_.pose.pose);
AckermannLateralCommand output_cmd;
if (pp_output) {
// 计算方向盘转角,注意这里传入的是纯跟踪定圆的曲率,而不是规划轨迹的曲率
output_cmd = generateCtrlCmdMsg(pp_output->curvature);
prev_cmd_ = boost::optional<AckermannLateralCommand>(output_cmd);
publishDebugMarker();
} else {
RCLCPP_WARN_THROTTLE(
logger_, *clock_, 5000, "failed to solve pure_pursuit for control command calculation");
if (prev_cmd_) {
output_cmd = *prev_cmd_;
} else {
output_cmd = generateCtrlCmdMsg(0.0);
}
}
return output_cmd;
}
AckermannLateralCommand PurePursuitLateralController::generateCtrlCmdMsg(
const double target_curvature)
{
// 根据阿克曼转向几何,计算方向盘转角 tanδ = L/R
const double tmp_steering =
planning_utils::convertCurvatureToSteeringAngle(param_.wheel_base, target_curvature);
AckermannLateralCommand cmd;
cmd.stamp = clock_->now();
// 限制方向盘转角范围,转换成float数据类型
cmd.steering_tire_angle = static_cast<float>(
std::min(std::max(tmp_steering, -param_.max_steering_angle), param_.max_steering_angle));
// pub_ctrl_cmd_->publish(cmd);
return cmd;
}
void PurePursuitLateralController::publishDebugMarker() const
{
visualization_msgs::msg::MarkerArray marker_array;
marker_array.markers.push_back(createNextTargetMarker(debug_data_.next_target));
marker_array.markers.push_back(
createTrajectoryCircleMarker(debug_data_.next_target, current_odometry_.pose.pose));
}
boost::optional<PpOutput> PurePursuitLateralController::calcTargetCurvature(
bool is_control_output, geometry_msgs::msg::Pose pose)
{
// Ignore invalid trajectory
if (trajectory_resampled_->points.size() < 3) {
RCLCPP_WARN_THROTTLE(logger_, *clock_, 5000, "received path size is < 3, ignored");
return {};
}
// Calculate target point for velocity/acceleration
// 计算规划轨迹中距离自车最近的点的index
const auto closest_idx_result =
motion_utils::findNearestIndex(output_tp_array_, pose, 3.0, M_PI_4);
if (!closest_idx_result) {
RCLCPP_ERROR(logger_, "cannot find closest waypoint");
return {};
}
const double target_vel =
trajectory_resampled_->points.at(*closest_idx_result).longitudinal_velocity_mps;
// calculate the lateral error
const double lateral_error =
motion_utils::calcLateralOffset(trajectory_resampled_->points, pose.position);
// calculate the current curvature
const double current_curvature = calcCurvature(*closest_idx_result);
// Calculate lookahead distance
const bool is_reverse = (target_vel < 0);
const double min_lookahead_distance =
is_reverse ? param_.reverse_min_lookahead_distance : param_.min_lookahead_distance;
double lookahead_distance = min_lookahead_distance;
if (is_control_output) {
// 根据横向误差、轨迹曲率、车速计算预瞄距离
lookahead_distance = calcLookaheadDistance(
lateral_error, current_curvature, current_odometry_.twist.twist.linear.x,
min_lookahead_distance, is_control_output);
} else {
lookahead_distance = calcLookaheadDistance(
lateral_error, current_curvature, target_vel, min_lookahead_distance, is_control_output);
}
// Set PurePursuit data
pure_pursuit_->setCurrentPose(pose);
pure_pursuit_->setWaypoints(planning_utils::extractPoses(*trajectory_resampled_));
pure_pursuit_->setLookaheadDistance(lookahead_distance);
// Run PurePursuit
// 计算纯跟踪算法的曲率,也就是半径
const auto pure_pursuit_result = pure_pursuit_->run();
if (!pure_pursuit_result.first) {
return {};
}
const auto kappa = pure_pursuit_result.second;
// Set debug data
if (is_control_output) {
debug_data_.next_target = pure_pursuit_->getLocationOfNextTarget();
}
PpOutput output{};
output.curvature = kappa;
if (!is_control_output) {
output.velocity = current_odometry_.twist.twist.linear.x;
} else {
output.velocity = target_vel;
}
return output;
}
} // namespace pure_pursuit
PurePursuitLateralController
类成员函数众多,接下来详细介绍里面几个关键的函数。
LateralOutput PurePursuitLateralController::run(const InputData & input_data)
此函数是入口函数,是计算纯跟踪前轮转角的外层函数,主要通过调用generateOutputControlCmd()来计算前轮转角。
AckermannLateralCommand PurePursuitLateralController::generateOutputControlCmd()
该函数首先调用纯跟踪算法calcTargetCurvature(),计算跟踪的曲率半径;然后,调用generateCtrlCmdMsg()
通过阿克曼转向几何计算得到前轮转角,也就是
tan
δ
=
L
/
R
\tan \delta = L/R
tanδ=L/R
boost::optional<PpOutput> PurePursuitLateralController::calcTargetCurvature(
bool is_control_output, geometry_msgs::msg::Pose pose)
该函数首先调用calcLookaheadDistance()计算预瞄距离
然后,通过指针调用纯跟踪类的run()函数计算得到,车辆纯跟踪定圆的曲率半径。
const auto pure_pursuit_result = pure_pursuit_->run();
作为纯跟踪算法里面最关键的参数,预瞄距离的计算在这里实现:
ld = k1 * v - k2 * kappa + k3 * Err_y
这样的计算本身没有毛病,正如前面所讲,这里各个系数的给的工程上一般通过查表得到。
double PurePursuitLateralController::calcLookaheadDistance(
const double lateral_error, const double curvature, const double velocity, const double min_ld,
const bool is_control_cmd)
{
const double vel_ld = abs(param_.ld_velocity_ratio * velocity); // k1*v
const double curvature_ld = -abs(param_.ld_curvature_ratio * curvature); // -k2*kappa
double lateral_error_ld = 0.0;
if (abs(lateral_error) >= param_.long_ld_lateral_error_threshold) {
// If lateral error is higher than threshold, we should make ld larger to prevent entering the
// road with high heading error.
// 如果横向误差高于阈值,我们应该使ld更大,以防止进入具有高航向误差的道路。
lateral_error_ld = abs(param_.ld_lateral_error_ratio * lateral_error); // k3*Err_y
}
// 总的预瞄距离,限幅
const double total_ld =
std::clamp(vel_ld + curvature_ld + lateral_error_ld, min_ld, param_.max_lookahead_distance);
return total_ld;
}
7.3 pure_pursuit.cpp
#include "pure_pursuit/pure_pursuit.hpp"
#include "pure_pursuit/util/planning_utils.hpp"
#include <limits>
#include <memory>
#include <utility>
#include <vector>
namespace pure_pursuit
{
bool PurePursuit::isDataReady()
{
if (!curr_wps_ptr_) {
return false;
}
if (!curr_pose_ptr_) {
return false;
}
return true;
}
std::pair<bool, double> PurePursuit::run()
{
if (!isDataReady()) {
return std::make_pair(false, std::numeric_limits<double>::quiet_NaN());
}
// 找到规划的轨迹点中距离自车最近的点的index
auto closest_pair = planning_utils::findClosestIdxWithDistAngThr(
*curr_wps_ptr_, *curr_pose_ptr_, closest_thr_dist_, closest_thr_ang_);
// 规划轨迹中未能找过最近的点
if (!closest_pair.first) {
RCLCPP_WARN(
logger, "cannot find, curr_bool: %d, closest_idx: %d", closest_pair.first,
closest_pair.second);
return std::make_pair(false, std::numeric_limits<double>::quiet_NaN());
}
// 找到预瞄点的index
int32_t next_wp_idx = findNextPointIdx(closest_pair.second);
// 没有找到预瞄点
if (next_wp_idx == -1) {
RCLCPP_WARN(logger, "lost next waypoint");
return std::make_pair(false, std::numeric_limits<double>::quiet_NaN());
}
loc_next_wp_ = curr_wps_ptr_->at(next_wp_idx).position;
geometry_msgs::msg::Point next_tgt_pos;
// if next waypoint is first
if (next_wp_idx == 0) {
next_tgt_pos = curr_wps_ptr_->at(next_wp_idx).position;
} else {
// linear interpolation
std::pair<bool, geometry_msgs::msg::Point> lerp_pair = lerpNextTarget(next_wp_idx);
// 插值没有找到预瞄点
if (!lerp_pair.first) {
RCLCPP_WARN(logger, "lost target! ");
return std::make_pair(false, std::numeric_limits<double>::quiet_NaN());
}
next_tgt_pos = lerp_pair.second;
}
loc_next_tgt_ = next_tgt_pos;
// 计算曲率1/R,也就是纯跟踪算法中自车转过的定圆
double kappa = planning_utils::calcCurvature(next_tgt_pos, *curr_pose_ptr_);
return std::make_pair(true, kappa);
}
// linear interpolation of next target
std::pair<bool, geometry_msgs::msg::Point> PurePursuit::lerpNextTarget(int32_t next_wp_idx)
{
constexpr double ERROR2 = 1e-5; // 0.00001
const geometry_msgs::msg::Point & vec_end = curr_wps_ptr_->at(next_wp_idx).position;
const geometry_msgs::msg::Point & vec_start = curr_wps_ptr_->at(next_wp_idx - 1).position;
const geometry_msgs::msg::Pose & curr_pose = *curr_pose_ptr_;
Eigen::Vector3d vec_a((vec_end.x - vec_start.x),
(vec_end.y - vec_start.y),
(vec_end.z - vec_start.z));
// 计算三维向量的范数(即向量的长度),记录debug信息
if (vec_a.norm() < ERROR2) {
RCLCPP_ERROR(logger, "waypoint interval is almost 0");
return std::make_pair(false, geometry_msgs::msg::Point());
}
// 根据给定的线段和点的坐标,计算点到线的距离
const double lateral_error =
planning_utils::calcLateralError2D(vec_start, vec_end, curr_pose.position);
// 横向误差大于预瞄距离,记录debug信息
if (fabs(lateral_error) > lookahead_distance_) {
RCLCPP_ERROR(logger, "lateral error is larger than lookahead distance");
RCLCPP_ERROR(
logger, "lateral error: %lf, lookahead distance: %lf", lateral_error, lookahead_distance_);
return std::make_pair(false, geometry_msgs::msg::Point());
}
/* calculate the position of the foot of a perpendicular line */
// 根据横向距离计算垂直于路径线的垂足位置,并返回该位置作为插值结果。
Eigen::Vector2d uva2d(vec_a.x(), vec_a.y());
uva2d.normalize(); // 归一化,只保留方向信息
Eigen::Rotation2Dd rot =(lateral_error > 0) ? Eigen::Rotation2Dd(-M_PI / 2.0) : Eigen::Rotation2Dd(M_PI / 2.0);
Eigen::Vector2d uva2d_rot = rot * uva2d;
geometry_msgs::msg::Point h;
h.x = curr_pose.position.x + fabs(lateral_error) * uva2d_rot.x();
h.y = curr_pose.position.y + fabs(lateral_error) * uva2d_rot.y();
h.z = curr_pose.position.z;
// if there is a intersection
if (fabs(fabs(lateral_error) - lookahead_distance_) < ERROR2) {
// 横向误差与预瞄距离之差的绝对值小于ERROR2,则表示垂足点就是目标点
return std::make_pair(true, h);
} else {
// if there are two intersection, get intersection in front of vehicle
const double s = sqrt(pow(lookahead_distance_, 2) - pow(lateral_error, 2));
geometry_msgs::msg::Point res;
res.x = h.x + s * uva2d.x();
res.y = h.y + s * uva2d.y();
res.z = curr_pose.position.z;
return std::make_pair(true, res);
}
}
// 找到预瞄点的index
int32_t PurePursuit::findNextPointIdx(int32_t search_start_idx)
{
// if waypoints are not given, do nothing.
if (curr_wps_ptr_->empty() || search_start_idx == -1) {
return -1;
}
// look for the next waypoint.
for (int32_t i = search_start_idx; i < (int32_t)curr_wps_ptr_->size(); i++) {
// if search waypoint is the last
if (i == ((int32_t)curr_wps_ptr_->size() - 1)) {
return i;
}
const auto gld = planning_utils::getLaneDirection(*curr_wps_ptr_, 0.05);
// if waypoint direction is forward
if (gld == 0) {
// if waypoint is not in front of ego, skip
auto ret = planning_utils::transformToRelativeCoordinate2D(
curr_wps_ptr_->at(i).position, *curr_pose_ptr_);
if (ret.x < 0) {
continue;
}
} else if (gld == 1) {
// waypoint direction is backward
// if waypoint is in front of ego, skip
auto ret = planning_utils::transformToRelativeCoordinate2D(
curr_wps_ptr_->at(i).position, *curr_pose_ptr_);
if (ret.x > 0) {
continue;
}
} else {
return -1;
}
const geometry_msgs::msg::Point & curr_motion_point = curr_wps_ptr_->at(i).position; // 当前规划的轨迹点i
const geometry_msgs::msg::Point & curr_pose_point = curr_pose_ptr_->position; // 当前自车位置
// if there exists an effective waypoint
const double ds = planning_utils::calcDistSquared2D(curr_motion_point, curr_pose_point); // 计算自车与规划轨迹点i的欧氏距离
// 找到 规划轨迹 中到 自车当前位置 的距离大于预瞄距离的点的index
if (ds > std::pow(lookahead_distance_, 2)) {
return i;
}
}
// if this program reaches here , it means we lost the waypoint!
return -1;
}
void PurePursuit::setCurrentPose(const geometry_msgs::msg::Pose & msg)
{
curr_pose_ptr_ = std::make_shared<geometry_msgs::msg::Pose>();
*curr_pose_ptr_ = msg;
}
void PurePursuit::setWaypoints(const std::vector<geometry_msgs::msg::Pose> & msg)
{
curr_wps_ptr_ = std::make_shared<std::vector<geometry_msgs::msg::Pose>>();
*curr_wps_ptr_ = msg;
}
} // namespace pure_pursuit
7.4 planning_utils.cpp
#include "pure_pursuit/util/planning_utils.hpp"
#include <limits>
#include <utility>
#include <vector>
namespace pure_pursuit
{
namespace planning_utils
{
double calcArcLengthFromWayPoint(
const autoware_auto_planning_msgs::msg::Trajectory & input_path, const size_t src_idx,
const size_t dst_idx)
{
double length = 0;
for (size_t i = src_idx; i < dst_idx; ++i) {
const double dx_wp =
input_path.points.at(i + 1).pose.position.x - input_path.points.at(i).pose.position.x;
const double dy_wp =
input_path.points.at(i + 1).pose.position.y - input_path.points.at(i).pose.position.y;
length += std::hypot(dx_wp, dy_wp);
}
return length;
}
double calcCurvature(
const geometry_msgs::msg::Point & target, const geometry_msgs::msg::Pose & current_pose)
{
constexpr double KAPPA_MAX = 1e9;
const double radius = calcRadius(target, current_pose);
if (fabs(radius) > 0) {
return 1 / radius;
} else {
return KAPPA_MAX;
}
}
double calcDistance2D(const geometry_msgs::msg::Point & p, const geometry_msgs::msg::Point & q)
{
const double dx = p.x - q.x;
const double dy = p.y - q.y;
return sqrt(dx * dx + dy * dy);
}
double calcDistSquared2D(const geometry_msgs::msg::Point & p, const geometry_msgs::msg::Point & q)
{
const double dx = p.x - q.x;
const double dy = p.y - q.y;
return dx * dx + dy * dy;
}
/* a_vec = line_e - line_s, b_vec = point - line_s
* a_vec x b_vec = |a_vec| * |b_vec| * sin(theta)
* = |a_vec| * lateral_error ( because, lateral_error = |b_vec| * sin(theta) )
*
* lateral_error = a_vec x b_vec / |a_vec|
* = (a_x * b_y - a_y * b_x) / |a_vec| */
double calcLateralError2D(
const geometry_msgs::msg::Point & line_s, const geometry_msgs::msg::Point & line_e,
const geometry_msgs::msg::Point & point)
{
// 根据给定的线段和点的坐标,计算点到线的距离
tf2::Vector3 a_vec((line_e.x - line_s.x), (line_e.y - line_s.y), 0.0);
tf2::Vector3 b_vec((point.x - line_s.x), (point.y - line_s.y), 0.0);
double lat_err = (a_vec.length() > 0) ? a_vec.cross(b_vec).z() / a_vec.length() : 0.0;
return lat_err;
}
double calcRadius(
//计算下一路径点与汽车当前位置之间的圆弧曲率 这里利用的相对坐标和圆里面的直角三角形的相似来求得圆的半径,最后得到圆弧曲率
const geometry_msgs::msg::Point & target, const geometry_msgs::msg::Pose & current_pose)
{
constexpr double RADIUS_MAX = 1e9;
const double denominator = 2 * transformToRelativeCoordinate2D(target, current_pose).y;
const double numerator = calcDistSquared2D(target, current_pose.position);
if (fabs(denominator) > 0) {
return numerator / denominator; // R = L^2 / 2y
} else {
return RADIUS_MAX;
}
}
double convertCurvatureToSteeringAngle(double wheel_base, double kappa)
{
return atan(wheel_base * kappa);
}
std::vector<geometry_msgs::msg::Pose> extractPoses(
const autoware_auto_planning_msgs::msg::Trajectory & trajectory)
{
std::vector<geometry_msgs::msg::Pose> poses;
for (const auto & p : trajectory.points) {
poses.push_back(p.pose);
}
return poses;
}
// get closest point index from current pose
// 找到规划的轨迹点中距离自车最近的点的index
std::pair<bool, int32_t> findClosestIdxWithDistAngThr(
const std::vector<geometry_msgs::msg::Pose> & poses,
const geometry_msgs::msg::Pose & current_pose, double th_dist, double th_yaw)
{
double dist_squared_min = std::numeric_limits<double>::max();
int32_t idx_min = -1;
for (size_t i = 0; i < poses.size(); ++i) {
// 计算轨迹点到自车的欧氏距离
const double ds = calcDistSquared2D(poses.at(i).position, current_pose.position);
if (ds > th_dist * th_dist) {
// 距离不得超过阈值
continue;
}
const double yaw_pose = tf2::getYaw(current_pose.orientation);
const double yaw_ps = tf2::getYaw(poses.at(i).orientation);
// 航向角误差统一到[-pi pi]
const double yaw_diff = normalizeEulerAngle(yaw_pose - yaw_ps);
if (fabs(yaw_diff) > th_yaw) {
// 航向角误差不得超过阈值
continue;
}
if (ds < dist_squared_min) {
dist_squared_min = ds;
idx_min = i;
}
}
return (idx_min >= 0) ? std::make_pair(true, idx_min) : std::make_pair(false, idx_min);
}
int8_t getLaneDirection(const std::vector<geometry_msgs::msg::Pose> & poses, double th_dist)
{
if (poses.size() < 2) {
RCLCPP_ERROR(rclcpp::get_logger(PLANNING_UTILS_LOGGER), "size of waypoints is smaller than 2");
return 2;
}
for (uint32_t i = 0; i < poses.size(); i++) {
geometry_msgs::msg::Pose prev;
geometry_msgs::msg::Pose next;
if (i == (poses.size() - 1)) {
prev = poses.at(i - 1);
next = poses.at(i);
} else {
prev = poses.at(i);
next = poses.at(i + 1);
}
if (planning_utils::calcDistSquared2D(prev.position, next.position) > th_dist * th_dist) {
// 转换成相对坐标,判断x大于0,则路径方向为正
const auto rel_p = transformToRelativeCoordinate2D(next.position, prev);
return (rel_p.x > 0.0) ? 0 : 1;
}
}
RCLCPP_ERROR(rclcpp::get_logger(PLANNING_UTILS_LOGGER), "lane is something wrong");
return 2;
}
bool isDirectionForward(
const geometry_msgs::msg::Pose & prev, const geometry_msgs::msg::Pose & next)
{
return (transformToRelativeCoordinate2D(next.position, prev).x > 0.0) ? true : false;
}
bool isDirectionForward(
const geometry_msgs::msg::Pose & prev, const geometry_msgs::msg::Point & next)
{
return transformToRelativeCoordinate2D(next, prev).x > 0.0;
}
template <>
bool isInPolygon(
const std::vector<geometry_msgs::msg::Point> & polygon, const geometry_msgs::msg::Point & point)
{
std::vector<tf2::Vector3> polygon_conv;
for (const auto & el : polygon) {
polygon_conv.emplace_back(el.x, el.y, el.z);
}
tf2::Vector3 point_conv = tf2::Vector3(point.x, point.y, point.z);
return isInPolygon<tf2::Vector3>(polygon_conv, point_conv);
}
double kmph2mps(const double velocity_kmph)
{
return (velocity_kmph * 1000) / (60 * 60);
}
double normalizeEulerAngle(const double euler)
{
double res = euler;
while (res > M_PI) {
res -= (2 * M_PI);
}
while (res < -M_PI) {
res += 2 * M_PI;
}
return res;
}
// ref: http://www.mech.tohoku-gakuin.ac.jp/rde/contents/course/robotics/coordtrans.html
// (pu, pv): relative, (px, py): absolute, (ox, oy): origin
// (px, py) = rot * (pu, pv) + (ox, oy)
geometry_msgs::msg::Point transformToAbsoluteCoordinate2D(
const geometry_msgs::msg::Point & point, const geometry_msgs::msg::Pose & origin)
{
// rotation
geometry_msgs::msg::Point rot_p;
double yaw = tf2::getYaw(origin.orientation);
rot_p.x = (cos(yaw) * point.x) + ((-1) * sin(yaw) * point.y);
rot_p.y = (sin(yaw) * point.x) + (cos(yaw) * point.y);
// translation
geometry_msgs::msg::Point res;
res.x = rot_p.x + origin.position.x;
res.y = rot_p.y + origin.position.y;
res.z = origin.position.z;
return res;
}
// ref: http://www.mech.tohoku-gakuin.ac.jp/rde/contents/course/robotics/coordtrans.html
// (pu, pv): relative, (px, py): absolute, (ox, oy): origin
// (pu, pv) = rot^-1 * {(px, py) - (ox, oy)}
geometry_msgs::msg::Point transformToRelativeCoordinate2D(
const geometry_msgs::msg::Point & point, const geometry_msgs::msg::Pose & origin)
{
// translation
geometry_msgs::msg::Point trans_p;
trans_p.x = point.x - origin.position.x;
trans_p.y = point.y - origin.position.y;
// rotation (use inverse matrix of rotation)
double yaw = tf2::getYaw(origin.orientation);
geometry_msgs::msg::Point res;
res.x = (cos(yaw) * trans_p.x) + (sin(yaw) * trans_p.y);
res.y = ((-1) * sin(yaw) * trans_p.x) + (cos(yaw) * trans_p.y);
res.z = origin.position.z;
return res;
}
geometry_msgs::msg::Quaternion getQuaternionFromYaw(const double _yaw)
{
tf2::Quaternion q;
q.setRPY(0, 0, _yaw);
return tf2::toMsg(q);
}
} // namespace planning_utils
} // namespace pure_pursuit
八、总结
纯跟踪算法是假设车辆做定圆运动,其本质是 P P P 控制,这也就意味着算法的上限不会很高。但通过一系列优化方法,在实际工程化应用中还是可以达到很好的效果。
参考资料
1、自动驾驶规划控制
2、自动驾驶控制算法——纯跟踪算法(Pure Pursuit)
后记:
🌟 感谢您耐心阅读这篇关于 Pure Pursuit 纯跟踪算法详解与编程实现 的技术博客。 📚
🎯 如果您觉得这篇博客对您有所帮助,请不要吝啬您的点赞和评论 📢
🌟您的支持是我继续创作的动力。同时,别忘了收藏本篇博客,以便日后随时查阅。🚀
🚗 让我们一起期待更多的技术分享,共同探索移动机器人的无限可能!💡
🎭感谢您的支持与关注,让我们一起在知识的海洋中砥砺前行 🚀