20240922 每日AI必读资讯

news2025/1/10 3:50:43

OpenAI 首席科学家 MIT演讲!

- 揭示 o1模型训练核心秘密: 通过激励模型学习是培养 AGI 系统通用技能的最佳方式。

- 提出了类比“教人钓鱼”的方式,强调激励学习的重要性:“授人以鱼,不如授人以渔”,但是更进一步的激励应该是: “让他知道鱼的美味,并让他保持饥饿”,这样他就会主动去学习如何钓鱼。

- 在这个过程中,他还会学会其他技能,如耐心、阅读天气、了解鱼类等。而其中有些技能是通用的,可以应用到其他任务中。

- 通过激励来教导比直接教导可能要花费更多时间。对于人类来说确实如此,但对机器来说,可以增加计算量以缩短时间。因为机器可以通过更多的计算资源克服人类时间上的限制,从而在专门领域表现得比专家更好。

- 这就像在《龙珠》中,有个“精神与时间之屋”,在里面训练一年,外面只过一天,倍率是365。对于机器来说,这个倍数要高得多。因此,它认为通过高效的计算,通才模型在专门领域中也能超越专家。

以下是演讲主要内容总结:

1. 通用智能 vs. 专用智能

Hyung Won Chung 强调了通用智能(General Intelligence)与专用智能(Specialized Intelligence)的区别。专用智能模型是为特定任务设计的,适合处理单一任务,而通用智能模型能够处理广泛的任务,适应各种未知场景。

由于通用智能要求模型具备更强的适应能力,研究者不可能为模型教授每个具体任务。相反,Hyung Won Chung 认为,通过弱激励机制,让模型在大规模数据和计算资源的驱动下自主学习各种技能,才是通往通用智能的可行途径。

2. 扩展与计算能力的关键作用

Hyung Won Chung 展示了一个重要的数据点:计算能力以指数级增长,成本持续降低。这意味着随着时间的推移,更多的计算资源变得可用,这为AI研究提供了巨大的机会。

他指出,AI研究者的工作是利用这种不断扩大的计算能力,设计可扩展的算法,使模型能够随着计算资源的增加而自动提升性能。与此相对,那些高度结构化的模型虽然在初期可能表现较好,但在规模化时往往会遇到瓶颈。

3. 弱激励学习(Weak Incentive Learning)

目前大规模语言模型,如GPT-3和GPT-4,使用的是弱激励学习,例如通过下一个词预测任务来驱动模型的训练。Hyung Won Chung 提出,通过这种任务,模型不仅学会了语言,还掌握了推理、数学和编码等技能,尽管这些技能并没有被直接教授。

他进一步指出,与其直接教给模型某种技能,最好的方法是通过提供弱激励,让模型在面对大量任务时自主发展出解决问题的通用能力。例如,通过训练模型进行下一个词的预测,模型不但学会了语言结构,还学会了如何在没有明确指令的情况下推理出复杂答案。

4. 涌现能力(Emergent Abilities)

Hyung Won Chung 详细讨论了涌现能力这一现象。随着模型规模的扩大,模型在解决问题时往往会自发地表现出新能力。这些能力并非被人为编码,而是通过模型的自我学习在训练过程中自然涌现出来的。

他用大规模语言模型的例子说明了这一点。在没有直接教授推理或数学的情况下,GPT-4等模型能够表现出复杂的推理能力和数学计算能力。这表明,涌现能力是随着模型规模扩展而自然发生的,尤其是在面对广泛的任务时。

5. 激励结构的设计

Hyung Won Chung 提倡为AI模型设计更复杂的激励结构。通过引入更丰富的奖励机制,模型可以学会更高层次的能力。例如,Hyung Won Chung 提出,为了解决语言模型中的“幻觉问题”(hallucination),可以设计奖励结构,使得模型不仅仅追求回答问题的正确性,还要学会在不确定的情况下说“不知道”。

他指出,通过激励结构,模型可以学会如何判断自己是否知道答案,这种能力对提高模型的可靠性和可信度至关重要。激励结构使模型在大量任务的驱动下学会适应不同的问题情境,并在此过程中发展出更通用的能力。

6. 扩展定义的重新思考

Hyung Won Chung 对“扩展”(Scaling)的定义进行了重新审视。传统意义上的扩展指的是“用更多的机器做相同的事情”,但他认为,这种定义过于狭隘。

他提出了一种更有价值的扩展定义:识别那些限制进一步扩展的假设或结构,并用更具扩展性的方法替代它们。这种扩展不只是增加计算资源,还涉及对模型进行重新设计,使其更好地利用不断增加的计算能力和数据。

7. 持续的“去学习”与适应

随着更强大的模型(如GPT-4)的推出,AI领域的基本假设不断变化。Hyung Won Chung 指出,研究者需要具备一种持续“去学习”的能力,以便适应新模型带来的新现实。

他解释说,语言模型的发展使得我们几乎每隔几年就必须抛弃旧的认知,适应新模型带来的新能力。这种去学习的过程对于保持在AI领域的领先地位至关重要,因为每次新模型的出现都会改变我们对AI的理解和使用方式。

🔗完整演讲视频:https://youtube.com/watch?v=kYWUEV_e2ss

🔗演讲PPT:https://docs.google.com/presentation/d/1nnjXIuN2XDJENAOaKXI5srQscO3276svvP6JgivTv6w/edit#slide=id.g2885e521b53_0_0

Libcimbar:无需联网、蓝牙、NFC,扫描二维码即可传输文件

- 通过一种特殊算法可将最大33MB的文件压缩成一种特殊的二维条码格式(色彩图标矩阵条码)

- 然后通过手机摄像头扫描即可读取并解码这些条码,再将其转化为文件或数据。

- 传输速度可以达到 850 kbps

- Libcimbar 使用 Reed-Solomon 纠错码,即使部分条码数据丢失或损坏,也能够进行恢复和纠错

- 支持多个平台(如 Linux 和 Android),也可以在网页浏览器中运行。意味着你可以在不同设备上使用它来进行数据传输。

🔗详细介绍:https://xiaohu.ai/p/13836

🔗GitHub:https://github.com/sz3/libcimbar

🔗解码器安卓应用: https://github.com/sz3/cfc

LVCD:专门为动画视频线稿上色工具 

- 可以把黑白线稿自动转化为彩色动画视频

- LVCD 可以同时处理整个视频序列,保证每一帧的颜色连贯,尤其是在角色快速移动时,也能保持颜色一致。

- 特别擅长处理大幅度运动的动画场景

- 利用参考帧中的颜色信息,将这些颜色准确迁移到其他帧中

- 能够处理多种类型的线稿输入,包括手绘线稿和自动生成的线稿。

- 能够生成不限长度的长时间视频,而不是被原始模型的固定长度限制住。

🔗项目地址:https://luckyhzt.github.io/lvcd

🔗 https://blink.csdn.net/details/1821036

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2155833.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

机器视觉OpenCV

1. 环境配置 1.1 安装Python https://www.python.org/downloads/windows/ python-3.9.13-amd64 pip下载加速: pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple pip config set install.trusted-host mirrors.aliyun.com1.2 安装Ope…

串口RS232,485

RS232和RS485都是串口通信的变种 TTL 串口的波特率/频率:9600,115200等,表示在1s内,串口可以传输9600个高低电平 那串口通信时,高低电压的范围:TTL电平 TTL 的电平标准,理想状态下&#xff0…

通信工程学习:什么是NFV网络功能虚拟化

NFV:网络功能虚拟化 NFV(Network Function Virtualization),即网络功能虚拟化,是一种通过虚拟化技术实现网络功能的技术手段。它借鉴了x86服务器的架构,将传统的网络硬件设备如路由器、交换机、防火墙、负载…

SOMEIP_ETS_123: SD_Length_of_Entry_Array_longer_than_message_allows

测试目的: 验证DUT能够拒绝一个条目数组长度超出消息总长度的SubscribeEventgroup消息,并以SubscribeEventgroupNAck作为响应。 描述 本测试用例旨在确保DUT遵循SOME/IP协议,当接收到一个条目数组长度超出消息总长度的SubscribeEventgroup…

【数据结构与算法 | 灵神题单 | 二叉搜索树篇】力扣653

1. 力扣653:两数之和IV - 输入二叉搜索树 1.1 题目: 给定一个二叉搜索树 root 和一个目标结果 k,如果二叉搜索树中存在两个元素且它们的和等于给定的目标结果,则返回 true。 示例 1: 输入: root [5,3,6,2,4,null,7…

【Python从入门到进阶】65、Pandas如何批量拆分与合并Excel文件

接上篇《64、Pandas如何实现数据的Concat合并》 上一篇我们学习了Pandas如何实现数据的Concat合并,本篇我们来继续学习Pandas如何批量拆分与合并Excel文件。 一、引言 在当今数据驱动的时代,Excel文件作为数据处理和分析的基石,扮演着不可或…

xxl-job使用总结

xxl-job从入门到入土 xxl-job介绍 xxl-job是一个分布式任务调度平台&#xff0c;其核心设计目标是开发迅速、学习简单、轻量级、易扩展。xxl-job支持调度中心集群和执行器集群。 xxl-job开源项目 xxl-job使用 xxl-job整合SpringBoot 引入xxl-job的依赖 <dependency>…

SpringBoot 3.4.0还没来之前,又又又更新啦!SpringBoot 3.3.4版本依赖升级,性能与稳定性再提升!

为什么要使用SpringBoot在现代开发中&#xff0c;高效与灵活性是每个开发团队追求的核心目标。然而&#xff0c;如何在不牺牲灵活性的前提下&#xff0c;快速构建复杂的应用程序&#xff0c;常常成为开发者的难题。SpringBoot的出现&#xff0c;正是为了解决这个矛盾。它以“约…

【Linux】【Hadoop】大数据基础实验一

实验一&#xff1a;熟悉常用的Linux操作和Hadoop操作 一、实验目的 Hadoop运行在Linux系统上&#xff0c;因此&#xff0c;需要学习实践一些常用的Linux命令。本实验旨在熟悉常用的Linux操作和Hadoop操作&#xff0c;为顺利开展后续其他实验奠定基础。 二、实验平台 操作系统…

从 Affine Particle-In-Cell (APIC) 到 Material Point Method (MPM 物质点法)

APIC与MPM Particle-In-Cell (PIC)Affine Particle-In-Cell (APIC)Material Point Method (MPM)关于边界投影等额外操作 Material Point Method (MPM 物质点法)是一种混合欧拉-拉格朗日视角物理仿真方法。 欧拉视角即网格视角&#xff0c;将空间划分为网格&#xff0c;通过表示…

【永磁同步电机(PMSM)】 5. PMSM 的仿真模型

【永磁同步电机&#xff08;PMSM&#xff09;】 5. PMSM 的仿真模型 1. 基于 Simulink 的仿真模型1.1 PMSM 的数学模型1.2 Simulink 仿真模型1.3 模块封装&#xff08;mask&#xff09;1.4 三相PMSM矢量控制仿真模型 2. Simscape 的 PMSM 模块2.1 PMSM 模块的配置2.2 PMSM 模块…

秃头篇——二叉树进阶算法题

一、根据二叉树创建字符串 题目&#xff1a; 思路&#xff1a;这个题很明显需要我们采用二叉树的递归实现&#xff08;前序遍历&#xff09;&#xff0c;但有一个注意的点&#xff1a;空括号能不能省略的问题&#xff0c;其实我们发现只要左为空&#xff0c;右不为空不能省略括…

[JavaEE] 网络初识(网络通信 及 TCP / UDP / IP 封装分用 )

Author&#xff1a;MTingle major:人工智能 --------------------------------------- Build your hopes like a tower! 文章目录 目录 文章目录 一. 网络通信基础 1. 局域网LAN 2. ⼴域⽹WAN 3. IP地址 4. 端口号 二.协议 1. 五元组 2. 协议分层 协议分层的优点: 3. OSI七层协…

OJ在线评测系统 后端开发数据库初始化工作 开发库表 建立数据库索引 Mybatis映射初始化接口开发

后端接口开发库表设计 项目主业务流程的开发 1.用户模块 注册&#xff08;后端已实现&#xff09; 登录&#xff08;后端已实现 前端已实现&#xff09; 2.题目模块 创建题目&#xff08;管理员&#xff09; 删除题目&#xff08;管理员&#xff09; 修改题目&#xff0…

基于SpringBoot+Vue+MySQL的校园一卡通系统

系统展示 用户前台界面 管理员后台界面 系统背景 随着现代社会的快速发展&#xff0c;校园一卡通已成为大学生活中不可或缺的一部分。它不仅承载着校园消费的功能&#xff0c;还集成了学生身份证明、图书馆借阅、门禁系统等多种服务。然而&#xff0c;传统的一卡通管理系统往往…

阿里HPN-用于大型语言模型训练的数据中心网络

阿里巴巴HPN:用于大型语言模型训练的数据中心网络 探索大规模语言模型训练新方法&#xff1a;阿里巴巴HPN数据中心网络论文。 摘要 本文介绍了阿里云用于大型语言模型(LLM)训练的数据中心网络HPN。由于LLM和一般云计算之间的差异(例如&#xff0c;在流量模式和容错性方面)&…

【机器学习】12-决策树1——概念、特征选择

机器学习10-决策树1 学习样本的特征&#xff0c;将样本划分到不同的类别&#xff08;分类问题&#xff09;或预测连续的数值&#xff08;回归问题&#xff09;。 选择特征&#xff0c;划分数据集&#xff0c;划分完成形成模型&#xff08;树结构&#xff09;&#xff0c;一个…

新手必看:一步步教你绑定常见邮箱到第三方应用(如何绑定QQ、163、Hotmail、Gmail等邮箱)

文章目录 📖 介绍 📖🏡 演示环境 🏡📒 邮箱绑定 📒📫 QQ邮箱📫 163邮箱📫 Hotmail邮箱📫 Gmail邮箱📫 Yahoo邮箱📫 iCloud邮箱📫 其他邮箱⚓️ 相关链接 ⚓️📖 介绍 📖 你是否曾经为绑定第三方邮箱而感到困惑?你不是一个人!许多人在尝试将QQ邮…

QT创建菜单

增加显示信息

MySQL数据库的增删改查以及基本操作分享

1、登录MySQL数据库 首先找到你安装MySQL数据库的目录&#xff0c;然后在终端打开该目录&#xff0c;输入以下命令 mysql -u root -p然后输入密码就可以登录数据库了&#xff0c;看到如下页面就是登陆成功了 ***注意在终端操纵数据库时所有语句写完之后一定要加 &#xff1…