机器学习之实战篇——图像压缩(K-means聚类算法)

news2024/11/15 18:43:11

机器学习之实战篇——图像压缩(K-means聚类算法)

  • 0. 文章传送
  • 1.实验任务
  • 2.实验思想
  • 3.实验过程

0. 文章传送

机器学习之监督学习(一)线性回归、多项式回归、算法优化[巨详细笔记]
机器学习之监督学习(二)二元逻辑回归
机器学习之监督学习(三)神经网络基础
机器学习之监督学习(四)决策树和随机森林
机器学习之实战篇——预测二手房房价(线性回归)
机器学习之实战篇——肿瘤良性/恶性分类器(二元逻辑回归)
机器学习之实战篇——MNIST手写数字0~9识别(全连接神经网络模型)
机器学习之非监督学习(一)K-means 聚类算法

1.实验任务

图像和实验文件打包如下:
通过百度网盘分享的文件:bird.zip
链接:https://pan.baidu.com/s/1RK1AF5iY8Pfi_tFxf-bLyw?pwd=tmdt
提取码:tmdt

2.实验思想

使用聚类算法进行图像压缩的思想:

①对于每一个像素点,表示其颜色需要存储三个颜色通道的值,每个值取值为范围0~255的整数,需要8bit(1byte)的存储空间,故对于原始图像共占128×128×1×3
=48kb的存储空间。通过图片属性可以查看其大小约为36kb,这是因为PNG 格式采用了无损压缩技术。虽然原始图像未压缩时大约占用 48 KB,但由于压缩,实际存储在计算机上的文件大小会小于这个值。

②进行图像压缩,需要减少像素点颜色的种类,本案例中假设压缩后颜色种类为16,假设用整数0~15表示每个整数可以用4bit(即0.5byte)表示,对于压缩后的图片,每个像素点只需存储相应的颜色编号,因此占据的存储空间为128×128×0.5+(16×1×3)≈ 8KB,大小仅仅是原始图像的 1 6 \frac{1}{6} 61!

③因此可以采用K-means聚类算法,数据集由包含三个颜色分量特征的128×128个像素点构成,设置目标聚类类别K=16,并使用编写的kmeans.py中的run_kMeans函数实现聚类算法。

3.实验过程

手动编写的kmeans模块,实现k-means聚类算法

#kmeans.py

import numpy as np
import matplotlib.pyplot as plt


# 计算每个数据点所归属的簇
def find_closest_centroids(X, centroids):
    K = centroids.shape[0]
    m = X.shape[0]
    idx = np.zeros(m, dtype=int)
    for i in range(m):
        idx[i] = np.argmin(np.sum((X[i] - centroids) ** 2, axis=1))
    return idx


# 根据当前分类情况计算新的簇心
def compute_centroids(X, idx, K):
    m, n = X.shape
    centroids = np.zeros((K, n))
    for k in range(K):
        cond = (idx == k)
        if cond.any():
            X_k = X[cond]
            centroids[k] = np.mean(X_k, axis=0)
        else:  # 如果没有点被分配到这个簇,则随机选择一个点作为新的簇心
            centroids[k] = X[np.random.choice(X.shape[0])]
    return centroids


# 随机初始化簇心
def kMeans_init_centroids(X, K):
    randidx = np.random.permutation(X.shape[0])
    centroids = X[randidx[:K]]
    return centroids


# 成本函数
def KMeans_compute_cost(X, centroids, idx):
    m = X.shape[0]
    cost = 0
    for i in range(m):
        K_idx = idx[i]
        X_centroid = centroids[K_idx]
        cost += np.sum((X_centroid - X[i]) ** 2)
    return cost / m


# 运行 K-means 聚类算法
def run_kMeans(X, K, max_iters=10, test_times=10):
    m, n = X.shape
    min_cost = float('inf')
    best_idx = np.zeros(m)
    best_centroids = np.zeros((K, n))

    for j in range(test_times):
        print(f'K-Means test {j}/{test_times - 1}:')
        initial_centroids = kMeans_init_centroids(X, K)
        centroids = initial_centroids

        for i in range(max_iters):
            print(f' K-Means iteration {i}/{max_iters - 1}')
            idx = find_closest_centroids(X, centroids)
            centroids = compute_centroids(X, idx, K)
            cost = KMeans_compute_cost(X, centroids, idx)

        if cost < min_cost:
            min_cost = cost
            best_idx = idx
            best_centroids = centroids

        print(f'cost: {cost}, min_cost: {min_cost}')

    return best_centroids, best_idx

导入所需模块

#导入所需模块
import numpy as np
import matplotlib.pyplot as plt
import kmeans as km

处理原始图像作为数据集

#将小鸟图读取为像素矩阵
bird=plt.imread('bird.png')
print(bird)
print(f'bird.shape:{bird.shape}')

原始小鸟彩色图片分辨率为128*128,RGB三个颜色通道值都已进行归一化处理(÷255)
注:因为png格式的图片以浮点数形式存储,而jpeg图像以整数(0~255)存储

#进行聚类之前,先将128*128*3的像素矩阵转化为(128*128=16384)*3的二维特征矩阵
bird_X=bird.reshape((128*128,3))
bird_X

运行聚类算法

K=16
color_centroids, color_idx=km.run_kMeans(bird_X,K)

使用聚类结果进行图像压缩

bird_compressed_X=color_centroids[color_idx]
bird_compressed=bird_compressed_X.reshape((128,128,3))
plt.imshow(bird_compressed)

对比压缩前后图片

# Display original image
fig, ax = plt.subplots(1,2, figsize=(8,8))
plt.axis('off')

ax[0].imshow(bird)
ax[0].set_title('Original')
ax[0].set_axis_off()


# Display compressed image
ax[1].imshow(bird_compressed)
ax[1].set_title('Compressed with %d colours'%K)
ax[1].set_axis_off()
#%% md

在这里插入图片描述

可以看到压缩后的图像大体上还是保留了原图像的主要特征,但大大节省了存储空间!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2154629.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Unity自我实现响应式属性

其实只是写着玩,响应式编程建议使用UniRx插件(一套成熟的响应式编程解决方案),我写的主要是借鉴一下这个思想,实现的也不够优雅,不过逻辑也算严密可以正常使用.你可以查看我写的理解响应式属性的思想. 借鉴UniRx的ReactiveProperty类,且UniRx不仅有响应式属性. using System; …

光伏板缺陷红外检测数据集

光伏板缺陷红外检测数据集 包含以下4个数据文件&#xff1a; /train&#xff1a;训练集 /valid&#xff1a;验证集 /test&#xff1a;测试集 README.txt&#xff1a;数据说明 【数据说明】检测目标以Pascal VOC格式进行标注&#xff0c;对每个图像进行以下预处理&#xff0c;统…

【Linux笔记】如何将内容从一个文件复制到另一个文件

比如&#xff1a;将文件tmp_file.txt中的部分数据&#xff0c;复制到file01.txt中去 tmp_file.txt文中内容&#xff1a; file01.txt为空文档 一、使用vi编辑器 I、文件中直接使用:e 目标文件进行切换文件复制 1、打开被复制文件 vi tmp_file.txt 2、进入一般命令模式 默认情况为…

2024年华为杯-研赛更新时间轴-资料分享

本次 助攻CDF题 问题一二三问均已完成更新&#xff0c;更新计划轴如图所示 由于赛题之间存在紧密的联系&#xff0c;单独发布问题一二&#xff0c;有可能与明天最终论文不相符&#xff0c;会根据后面问题对前面几问进行调整。个人建议&#xff0c;等明天上午的完整论文即可 题 …

ACT训练调参技巧

ACT Tuning Tips 这里是针对斯坦福Aloha机械臂远程训练调参技巧的中文解释&#xff0c;初学者可能会对此感到陌生&#xff0c;不过不用担心&#xff0c;多尝试&#xff0c;多实验。 - Chunk size is the most important param to tune when applying ACT to a new environment…

【YOLO目标检测学生课堂行为数据集】共4266张、已标注txt格式、有训练好的yolov5的模型

目录 说明图片示例 说明 数据集格式&#xff1a;YOLO格式 图片数量&#xff1a;4266 标注数量(txt文件个数)&#xff1a;4266 标注类别数&#xff1a;3 标注类别名称&#xff1a;hand、read、write 数据集下载&#xff1a;学生课堂行为数据集 图片示例 数据集图片&#…

HTML5中新增元素介绍

引入了许多新元素&#xff0c;以增强网页的语义和功能。这些新元素大致可以按以下几类进行分类和介绍。 下面是对各标签的详解&#xff0c;section、header、footer、nav、article、aside、figure、code、dialog、meter、time、progress、video、audio、details、atagrid、menu…

AIGC7: 高通骁龙AIPC开发者沙龙过程记录A

图中是一座高耸的宫殿。 就像AI的出现&#xff0c;慢慢初现端倪&#xff0c;头角峥嵘。 背景 一直以来都比较关注AI的发展&#xff0c;有幸再一次参加异常AI的盛会。 从我的角度看。 高通是一家生产芯片的公司&#xff0c;国内的小米&#xff0c;荣耀&#xff0c;Oppo , Vi…

Qt_窗口界面QMainWindow的介绍

目录 1、菜单栏QMenuBar 1.1 使用QMainWindow的准备工作 1.2 在ui文件中设计窗口 1.3 在代码中设计窗口 1.4 实现点击菜单项的反馈 1.5 菜单中设置快捷键 1.6 菜单中添加子菜单 1.7 菜单项中添加分割线和图标 1.8 关于菜单栏创建方式的讨论 2、工具栏QToolBar …

[产品管理-32]:NPDP新产品开发 - 30 - 文化、团队与领导力 - 领导力与团队的可持续发展

目录 一、团队领导的领导力 1.1 领导力 1、领导力的定义 2、领导力的重要性 3、领导力的构成要素 4、如何提升领导力 1.2 情商 二、虚拟团队 1、团队定义与特征 2、团队优势 3、团队挑战与应对策略 三、可持续发展 四、团队管理和领导力中的度量指标 4.1 激励创新…

unix中的进程标识以及使用场景

一、前言 本文将介绍unix系统中的进程标识以及使用场景。进程标识和用户标识类似&#xff0c;只不过其指代的对象是一个进程。我们常把进程标识称为进程ID&#xff0c;本文将讨论如下内容&#xff1a; 1.什么是进程标识&#xff1f; 2.特殊的进程标识 3.如果获取以及使用进程标…

深度学习02-pytorch-09(pytorch完结篇)-基本使用介绍-线性回归案例

使用PyTorch的基本流程&#xff1a;数据准备&#xff1a;通过make_regression生成回归数据&#xff0c;使用 TensorDataset 和 DataLoader 来封装数据。 模型定义&#xff1a;使用 nn.Module 或内置层&#xff08;如 nn.Linear&#xff09;来定义模型结构。 损失函数和优化器…

【全网最全】2024年华为杯研赛D题成品论文获取入口(后续会更新)

您的点赞收藏是我继续更新的最大动力&#xff01; 一定要点击如下的卡片&#xff0c;那是获取资料的入口&#xff01; 点击链接加入【2024华为杯研赛资料汇总】&#xff1a;https://qm.qq.com/q/XzdIsvbiM0https://qm.qq.com/q/XzdIsvbiM0 你是否在寻找数学建模比赛的突破点…

【他山之石】优化 JavaScript 的乐趣与价值(下)

前言 继本文的 上篇 发表之后&#xff0c;没想到反响还挺好&#xff0c;看来大家在 JS 优化的问题上越来越注重“与国际接轨”了。一起来看本文的下篇&#xff0c;也是干货满满。 文章目录 6. Avoid large objectsWhat the eff should I do about this? 7. Use eval8. Use str…

多元形式助力商业价值最大化,王鹤棣商业影响力遥遥领先

明星商业代言层出不穷&#xff0c;但在个人影响力的升级玩法上&#xff0c;当代青年偶像王鹤棣以其独特的个人魅力和卓越的商业头脑&#xff0c;正逐步搭建起一个以个人形象为核心&#xff0c;与各大品牌相互成就的立体商业模型。通过一系列创新的商务合作模式&#xff0c;王鹤…

[Java并发编程] synchronized(含与ReentrantLock的区别)

文章目录 1. synchronized与ReentrantLock的区别2. synchronized的作用3. synchronized的使用3.1 修饰实例方法&#xff0c;作用于当前实例&#xff0c;进入同步代码前需要先获取实例的锁3.2 修饰静态方法&#xff0c;作用于类的Class对象&#xff0c;进入修饰的静态方法前需要…

React组件如何暴露自身的方法

一、研究背景 最近遇到一个如何暴露React组件自身方法的问题。在某些时候&#xff0c;我们需要调用某个组件内部的方法以实现某个功能&#xff0c;因此我们需要了解如何暴露组件内部API的方法。 二、实践过程 本文主要介绍React组件暴露子组件API的方法&#xff0c;以下是实…

2024年研赛-华为杯数模竞赛C题论文首发+论文讲解+代码分享

2024年华为杯-研赛分享资料&#xff08;论文分享部分代码&#xff09;&#xff08;已更新部分代码&#xff09;&#xff1a;链接&#xff1a;https://pan.baidu.com/s/1HGIYjV3lqzUc_3H0vg5H8w 提取码&#xff1a;sxjm 题 目&#xff1a; _基于数据驱动下磁性元件的磁芯损耗建模…

leetcode第十三题:罗马数字转整数

罗马数字包含以下七种字符: I&#xff0c; V&#xff0c; X&#xff0c; L&#xff0c;C&#xff0c;D 和 M。 字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 1000 例如&#x…

OpenCV特征检测(7)角点检测函数goodFeaturesToTrack()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 确定图像上的强角点。 该函数根据 240中所描述的方法查找图像中最显著的角点或者指定图像区域内的最显著角点。 函数使用 cornerMinEigenVal 或…