深度学习笔记17_TensorFlow实现咖啡豆识别

news2024/9/21 20:44:12
  •  🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

一、我的环境

1.语言环境:Python 3.9

2.编译器:Pycharm

3.深度学习环境:TensorFlow 2.10.0

二、GPU设置

       若使用的是cpu则可忽略

import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")

、导入数据

data_dir = "./data/"
data_dir = pathlib.Path(data_dir)

image_count = len(list(data_dir.glob('*/*/*.jpg')))

print("图片总数为:",image_count)
#图片总数为:1200

、数据预处理

batch_size = 32
img_height = 224
img_width = 224

"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    "./data/train/",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    "./data/test/",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)
class_names = train_ds.class_names
print(class_names)

运行结果: 

['Dark', 'Green', 'Light', 'Medium']

五、可视化图片

plt.figure(figsize=(10, 4))  # 图形的宽为10高为5

for images, labels in train_ds.take(1):
    for i in range(10):
        
        ax = plt.subplot(2, 5, i + 1)  

        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        
        plt.axis("off")
plt.show()

 运行结果:

​​

再次检查数据:

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

 运行结果:

(32, 224, 224, 3)
(32,)

六、配置数据集

  • shuffle():打乱数据,关于此函数的详细介绍可以参考:https://zhuanlan.zhihu.com/p/42417456
  • prefetch():预取数据,加速运行
  • cache():将数据集缓存到内存当中,加速运行
AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
normalization_layer = layers.experimental.preprocessing.Rescaling(1./255)

train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
val_ds   = val_ds.map(lambda x, y: (normalization_layer(x), y))
image_batch, labels_batch = next(iter(val_ds))
first_image = image_batch[0]

# 查看归一化后的数据
print(np.min(first_image), np.max(first_image))

七、自建模型

from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout

def VGG16(nb_classes, input_shape):
    input_tensor = Input(shape=input_shape)
    # 1st block
    x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)
    x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)
    # 2nd block
    x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)
    x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)
    # 3rd block
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)
    # 4th block
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)
    # 5th block
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)
    # full connection
    x = Flatten()(x)
    x = Dense(4096, activation='relu',  name='fc1')(x)
    x = Dense(4096, activation='relu', name='fc2')(x)
    output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)

    model = Model(input_tensor, output_tensor)
    return model

model=VGG16(len(class_names), (img_width, img_height, 3))
model.summary()

运行结果:

_________________________________________________________________
 Layer (type)                Output Shape              Param #
=================================================================
 input_1 (InputLayer)        [(None, 224, 224, 3)]     0

 block1_conv1 (Conv2D)       (None, 224, 224, 64)      1792

 block1_conv2 (Conv2D)       (None, 224, 224, 64)      36928

 block1_pool (MaxPooling2D)  (None, 112, 112, 64)      0

 block2_conv1 (Conv2D)       (None, 112, 112, 128)     73856

 block2_conv2 (Conv2D)       (None, 112, 112, 128)     147584

 block2_pool (MaxPooling2D)  (None, 56, 56, 128)       0

 block3_conv1 (Conv2D)       (None, 56, 56, 256)       295168

 block3_conv2 (Conv2D)       (None, 56, 56, 256)       590080

 block3_conv3 (Conv2D)       (None, 56, 56, 256)       590080

 block3_pool (MaxPooling2D)  (None, 28, 28, 256)       0

 block4_conv1 (Conv2D)       (None, 28, 28, 512)       1180160

 block4_conv2 (Conv2D)       (None, 28, 28, 512)       2359808

 block4_conv3 (Conv2D)       (None, 28, 28, 512)       2359808

 block4_pool (MaxPooling2D)  (None, 14, 14, 512)       0

 block5_conv1 (Conv2D)       (None, 14, 14, 512)       2359808

 block5_conv2 (Conv2D)       (None, 14, 14, 512)       2359808

 block5_conv3 (Conv2D)       (None, 14, 14, 512)       2359808

 block5_pool (MaxPooling2D)  (None, 7, 7, 512)         0

 flatten (Flatten)           (None, 25088)             0

 fc1 (Dense)                 (None, 4096)              102764544

 fc2 (Dense)                 (None, 4096)              16781312

 predictions (Dense)         (None, 4)                 16388

=================================================================
Total params: 134,276,932
Trainable params: 134,276,932
Non-trainable params: 0
_________________________________________________________________

八、编译

        在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
# 设置初始学习率
initial_learning_rate = 1e-4

lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
        initial_learning_rate, 
        decay_steps=30,      # 敲黑板!!!这里是指 steps,不是指epochs
        decay_rate=0.92,     # lr经过一次衰减就会变成 decay_rate*lr
        staircase=True)

# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=initial_learning_rate)

model.compile(optimizer=opt,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['accuracy'])

九、训练模型

epochs = 20

history = model.fit(
    train_ds,
    validation_data=val_ds,
    epochs=epochs
)

运行结果:

Epoch 1/20
30/30 [==============================] - 38s 592ms/step - loss: 1.3814 - accuracy: 0.2573 - val_loss: 1.3019 - val_accuracy: 0.3083
Epoch 2/20
30/30 [==============================] - 15s 486ms/step - loss: 1.0376 - accuracy: 0.4719 - val_loss: 0.6470 - val_accuracy: 0.7458
Epoch 3/20
30/30 [==============================] - 14s 475ms/step - loss: 0.6289 - accuracy: 0.6542 - val_loss: 0.4882 - val_accuracy: 0.7500
Epoch 4/20
30/30 [==============================] - 15s 485ms/step - loss: 0.4762 - accuracy: 0.7979 - val_loss: 1.0989 - val_accuracy: 0.8000
Epoch 5/20
30/30 [==============================] - 14s 479ms/step - loss: 0.6664 - accuracy: 0.7260 - val_loss: 0.5444 - val_accuracy: 0.7750
Epoch 6/20
30/30 [==============================] - 14s 474ms/step - loss: 0.3893 - accuracy: 0.8448 - val_loss: 0.2358 - val_accuracy: 0.8875
Epoch 7/20
30/30 [==============================] - 14s 476ms/step - loss: 0.3163 - accuracy: 0.8969 - val_loss: 0.3107 - val_accuracy: 0.8667
Epoch 8/20
30/30 [==============================] - 14s 474ms/step - loss: 0.2634 - accuracy: 0.9062 - val_loss: 0.1829 - val_accuracy: 0.9333
Epoch 9/20
30/30 [==============================] - 14s 476ms/step - loss: 0.1136 - accuracy: 0.9646 - val_loss: 0.1342 - val_accuracy: 0.9458
Epoch 10/20
30/30 [==============================] - 14s 477ms/step - loss: 0.0828 - accuracy: 0.9760 - val_loss: 0.0664 - val_accuracy: 0.9833
Epoch 11/20
30/30 [==============================] - 14s 476ms/step - loss: 0.0683 - accuracy: 0.9729 - val_loss: 0.2063 - val_accuracy: 0.9458
Epoch 12/20
30/30 [==============================] - 14s 473ms/step - loss: 0.0537 - accuracy: 0.9823 - val_loss: 0.0288 - val_accuracy: 0.9917
Epoch 13/20
30/30 [==============================] - 14s 472ms/step - loss: 0.0404 - accuracy: 0.9865 - val_loss: 0.2180 - val_accuracy: 0.9458
Epoch 14/20
30/30 [==============================] - 14s 472ms/step - loss: 0.0382 - accuracy: 0.9917 - val_loss: 0.0738 - val_accuracy: 0.9750
Epoch 15/20
30/30 [==============================] - 14s 474ms/step - loss: 0.0152 - accuracy: 0.9969 - val_loss: 0.0499 - val_accuracy: 0.9750
Epoch 16/20
30/30 [==============================] - 15s 485ms/step - loss: 0.3555 - accuracy: 0.9167 - val_loss: 0.0507 - val_accuracy: 0.9875
Epoch 17/20
30/30 [==============================] - 15s 485ms/step - loss: 0.1555 - accuracy: 0.9552 - val_loss: 0.1155 - val_accuracy: 0.9667
Epoch 18/20
30/30 [==============================] - 15s 489ms/step - loss: 0.0767 - accuracy: 0.9688 - val_loss: 0.0613 - val_accuracy: 0.9875
Epoch 19/20
30/30 [==============================] - 15s 482ms/step - loss: 0.0432 - accuracy: 0.9812 - val_loss: 0.0915 - val_accuracy: 0.9750
Epoch 20/20
30/30 [==============================] - 14s 475ms/step - loss: 0.0367 - accuracy: 0.9906 - val_loss: 0.0337 - val_accuracy: 0.9833

 十、模型评估

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

全局平均池化代替全连接层

  • 极大的减少了网络的参数量(原始网络中全连接层参数量占到整个网络参数总量的80%作用)
  • 相当于在网络结构上做正则,防止模型发生过拟合
_________________________________________________________________
 Layer (type)                Output Shape              Param #
=================================================================
 input_1 (InputLayer)        [(None, 224, 224, 3)]     0

 block1_conv1 (Conv2D)       (None, 224, 224, 64)      1792

 block1_conv2 (Conv2D)       (None, 224, 224, 64)      36928

 block1_pool (MaxPooling2D)  (None, 112, 112, 64)      0

 block2_conv1 (Conv2D)       (None, 112, 112, 128)     73856

 block2_conv2 (Conv2D)       (None, 112, 112, 128)     147584

 block2_pool (MaxPooling2D)  (None, 56, 56, 128)       0

 block3_conv1 (Conv2D)       (None, 56, 56, 256)       295168

 block3_conv2 (Conv2D)       (None, 56, 56, 256)       590080

 block3_conv3 (Conv2D)       (None, 56, 56, 256)       590080

 block3_pool (MaxPooling2D)  (None, 28, 28, 256)       0

 block4_conv1 (Conv2D)       (None, 28, 28, 512)       1180160

 block4_conv2 (Conv2D)       (None, 28, 28, 512)       2359808

 block4_conv3 (Conv2D)       (None, 28, 28, 512)       2359808

 block4_pool (MaxPooling2D)  (None, 14, 14, 512)       0

 block5_conv1 (Conv2D)       (None, 14, 14, 512)       2359808

 block5_conv2 (Conv2D)       (None, 14, 14, 512)       2359808

 block5_conv3 (Conv2D)       (None, 14, 14, 512)       2359808

 block5_pool (MaxPooling2D)  (None, 7, 7, 512)         0

 global_average_pooling2d (G  (None, 512)              0
 lobalAveragePooling2D)

 predictions (Dense)         (None, 4)                 2052

=================================================================
Total params: 14,716,740
Trainable params: 14,716,740
Non-trainable params: 0
_________________________________________________________________
Epoch 1/20
30/30 [==============================] - 36s 561ms/step - loss: 1.3824 - accuracy: 0.2552 - val_loss: 1.3368 - val_accuracy: 0.2125
Epoch 2/20
30/30 [==============================] - 14s 451ms/step - loss: 1.2286 - accuracy: 0.3667 - val_loss: 0.9773 - val_accuracy: 0.5500
Epoch 3/20
30/30 [==============================] - 14s 452ms/step - loss: 0.8348 - accuracy: 0.6021 - val_loss: 0.7338 - val_accuracy: 0.6625
Epoch 4/20
30/30 [==============================] - 14s 450ms/step - loss: 0.6489 - accuracy: 0.7333 - val_loss: 0.8191 - val_accuracy: 0.6542
Epoch 5/20
30/30 [==============================] - 14s 451ms/step - loss: 0.6889 - accuracy: 0.7188 - val_loss: 0.4738 - val_accuracy: 0.8167
Epoch 6/20
30/30 [==============================] - 14s 452ms/step - loss: 0.3798 - accuracy: 0.8479 - val_loss: 0.3068 - val_accuracy: 0.8667
Epoch 7/20
30/30 [==============================] - 14s 453ms/step - loss: 0.3275 - accuracy: 0.8906 - val_loss: 0.2464 - val_accuracy: 0.9000
Epoch 8/20
30/30 [==============================] - 14s 460ms/step - loss: 0.4658 - accuracy: 0.8271 - val_loss: 0.6661 - val_accuracy: 0.7500
Epoch 9/20
30/30 [==============================] - 14s 462ms/step - loss: 0.2678 - accuracy: 0.9031 - val_loss: 0.2194 - val_accuracy: 0.9208
Epoch 10/20
30/30 [==============================] - 14s 456ms/step - loss: 0.2523 - accuracy: 0.9187 - val_loss: 0.2138 - val_accuracy: 0.9250
Epoch 11/20
30/30 [==============================] - 14s 460ms/step - loss: 0.1870 - accuracy: 0.9354 - val_loss: 0.2064 - val_accuracy: 0.9125
Epoch 12/20
30/30 [==============================] - 14s 456ms/step - loss: 0.2718 - accuracy: 0.9135 - val_loss: 0.6631 - val_accuracy: 0.7500
Epoch 13/20
30/30 [==============================] - 14s 458ms/step - loss: 0.3490 - accuracy: 0.8740 - val_loss: 0.1596 - val_accuracy: 0.9458
Epoch 14/20
30/30 [==============================] - 14s 463ms/step - loss: 0.1525 - accuracy: 0.9563 - val_loss: 0.1226 - val_accuracy: 0.9625
Epoch 15/20
30/30 [==============================] - 14s 454ms/step - loss: 0.1136 - accuracy: 0.9656 - val_loss: 0.2463 - val_accuracy: 0.8958
Epoch 16/20
30/30 [==============================] - 14s 453ms/step - loss: 0.0945 - accuracy: 0.9646 - val_loss: 0.2166 - val_accuracy: 0.9250
Epoch 17/20
30/30 [==============================] - 14s 453ms/step - loss: 0.1903 - accuracy: 0.9333 - val_loss: 0.0848 - val_accuracy: 0.9625
Epoch 18/20
30/30 [==============================] - 14s 455ms/step - loss: 0.1039 - accuracy: 0.9729 - val_loss: 0.1146 - val_accuracy: 0.9542
Epoch 19/20
30/30 [==============================] - 14s 453ms/step - loss: 0.0801 - accuracy: 0.9781 - val_loss: 0.0763 - val_accuracy: 0.9708
Epoch 20/20
30/30 [==============================] - 14s 453ms/step - loss: 0.0769 - accuracy: 0.9750 - val_loss: 0.0492 - val_accuracy: 0.9708

十一、总结

       本周通过tenserflow框架创建VGG16网络模型进行猴痘病识别学习,学习如何搭建VGG16网络模型,学习在不影响准确率的前提下轻量化模型;通过使用全局平均池化代替全连接层,极大的减少了网络的参数量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2153265.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

linux操作系统的基本命令

1.linux下的文件系统 在linux操作目录下没有像window操作系统下盘符的概念,只有一个根目录/,所有文件目录都在它的下面 linux的目录结构: 在Linux系统中: 文件都从跟目录开始的,用/表示文件名称区分大小写路径都是以/俩进行分隔(windown用\分隔)以.开头的文件为隐藏文件 Li…

Java反序列化利用链篇 | CC6链分析(通用版CC链)

文章目录 CC6和CC1之间的区别CC6的调用链构造CC6的payload完成TiedMapEntry.getValue()完成TiedMapEntry.hashCode()完成HashMap.hash()及HashMap.readObject()解决hash()方法提前触发的问题 系列篇其他文章,推荐顺序观看~ Java反序列化利用链篇 | JdbcRowSetImpl利…

LeetCode[中等] 215. 数组中的第 K 个最大元素

给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。 请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。 你必须设计并实现时间复杂度为 O(n) 的算法解决此问题。 思路:基于快排改进的快速…

【AI算法岗面试八股面经【超全整理】——深度学习】

AI算法岗面试八股面经【超全整理】 概率论【AI算法岗面试八股面经【超全整理】——概率论】信息论【AI算法岗面试八股面经【超全整理】——信息论】机器学习【AI算法岗面试八股面经【超全整理】——机器学习】深度学习CVNLP 目录 1、激活函数2、Softmax函数及求导3、优化器 1、…

LED灯、蜂鸣器、继电器的控制

LED灯的控制 该专栏所有文章都默认使用STM32F103ZET6开发板 目录 LED灯的控制 一、简单的LED灯控制 1、初始化函数 led灯 2、应用函数 2、蜂鸣器 3、继电器 一、简单的LED灯控制 编程框架:初始化函数和应用函数 1、初始化函数 初始化函数一般包括&#xf…

【学术会议:中国厦门,为全球的计算机科学与管理科技研究者提供一个国际交流平台】第五届计算机科学与管理科技国际学术会议(ICCSMT 2024)

您的学术研究值得被更多人看到! 在这里,我为您提供精准的会议推荐,包括计算机科学、管理科技、信息系统、人工智能、供应链管理等领域的国际会议。高效的稿件录用流程和优质的检索服务将确保您的研究成果迅速传播。关注我,寻找与…

Java免税商品优选商城:Spring Boot实战

第二章 系统开发关键技术 2.1 JAVA技术 Java主要采用CORBA技术和安全模型,可以在互联网应用的数据保护。它还提供了对EJB(Enterrise JavaBeans)的全面支持,java servlet AI,JS(java server ages&#xff09…

[Matplotlib教程] 02 折线图、柱状图、散点图教程

基于MFCC和CNN的语音情感识别 2 折线图、柱状图、散点图2.1 折线图2.1.1 简单折线图2.1.1 线形和Markevery2.1.2 带误差棒的折线图2.1.3 区间填充和透明度 2.2 柱状图2.2.1 分组柱状图2.2.2 堆叠柱状图2.2.3 横向柱状图 2.3 散点图 我们的网站是 菜码编程,我们的q群…

解决Hive乱码问题

在插入数据后,发现hive乱码 原因:Hive默认将存储表结构的元数据列编码设置为latin1,不支持中文 解决方法:在MySQL中修改对应Hive元数据列的编码 先查看mysql的所有字符集编码 1、先修改my.cnf 代码如下: vim /etc/…

C++——初步认识C++和namespace的用法

1.编程语言排行榜 我们通过排行可以看出 C在变成语言中还是占据着重要的地位 2.C在工作领域中的应用 1.PC客户端开发。⼀般是开发Windows上的桌面软件,比如WPS之类的,技术栈的话⼀般是C和 QT,QT 是⼀个跨平台的 C图形用户界面(G…

【解决】chrome 谷歌浏览器,鼠标点击任何区域都是 Input 输入框的状态,能看到输入的光标

chrome 谷歌浏览器,鼠标点击任何区域都是 Input 输入框的状态,能看到输入的光标 今天打开电脑的时候,网页中任何文本的地方,只要鼠标点击,就会出现一个输入的光标,无论在哪个站点哪个页面都是如此。 我知道…

Nature Communications|一种快速响应的智能可穿戴嗅觉接口(可穿戴电子/柔性电子/人机交互)

香港城市大学于欣格( Xinge Yu)、北京航空航天大学李宇航(Yuhang Li)、中国特种设备检验研究所赵召(Zhao Zhao)和东京大学Takao Someya团队,在《Nature Communications》上发布了一篇题为“Intelligent wearable olfactory interface for latency-free mixed reality and …

云盘视频保护神器,支持云盘视频加密与在线播放,配合alist使用,超完美!

平时我们保护视频,一般都是采用压缩工具,进行加密打包,然后在上传到网盘存储。这虽然能起到很好的保护,但是有很多问题?比如:无法直接在线播放,还得从网盘中下载后解压,才能进行观看…

【Python语言初识(一)】

一、python简史 1.1、python的历史 1989年圣诞节:Guido von Rossum开始写Python语言的编译器。1991年2月:第一个Python编译器(同时也是解释器)诞生,它是用C语言实现的(后面),可以调…

计算机人工智能前沿进展-大语言模型方向-2024-09-21

计算机人工智能前沿进展-大语言模型方向-2024-09-21 1. AIvril: AI-Driven RTL Generation With Verification In-The-Loop Authors: Mubashir ul Islam, Humza Sami, Pierre-Emmanuel Gaillardon, and Valerio Tenace AIVRIL: 人工智能驱动的RTL生成与验证内循环 摘要 本…

allWebPlugin中间件自定义alert、confirm及prompt使用

allWebPlugin简介 allWebPlugin中间件是一款为用户提供安全、可靠、便捷的浏览器插件服务的中间件产品,致力于将浏览器插件重新应用到所有浏览器。它将现有ActiveX控件直接嵌入浏览器,实现插件加载、界面显示、接口调用、事件回调等。支持Chrome、Firefo…

通信工程学习:什么是WLAN无线局域网

WLAN:无线局域网 WLAN(Wireless Local Area Network),即无线局域网,是一种利用无线技术实现局域网内设备间数据传输的网络系统。以下是对WLAN无线局域网的详细解释: 一、WLAN无线局域网的定义与概述 WLAN通…

python-3n+1数链/233

一:3n1数链题目描述 在计算机科学上,有很多类问题是无法解决的,我们称之为不可解决问题。然而,在很多情况下我们并不知道哪一类问题可以解决,哪一类问题不可解决。现在我们就有这样一个问题,问题如下&#…

Qt-QLabel 添加图片并设置 GIF 图动态效果

Qt-QLabel 添加图片并设置 GIF 图动态效果 一、添加图片资源并设置图片 选择标签,拖拉到界面上,然后选择器属性 picmap   选择设置,在这里添加图片资源   点击左边的加号符号按钮添加前缀,并设置前缀名,如果已经…

C++速通LeetCode中等第20题-随机链表的复制(三步简单图解)

方法图解: class Solution { public:Node* copyRandomList(Node* head) {if ( !head ) {return nullptr;}Node *cur head;// 1. 在原节点的每个节点后创建一个节点while ( cur ) {Node *newNode new Node(cur -> val);newNode -> next cur -> next;cur …