【第十三章:Sentosa_DSML社区版-机器学习聚类】

news2024/11/23 11:24:15

目录

【第十三章:Sentosa_DSML社区版-机器学习聚类】

13.1 KMeans聚类

13.2 二分KMeans聚类

13.3 高斯混合聚类

13.4 模糊C均值聚类

13.5 Canopy聚类

13.6 Canopy-KMeans聚类

13.7 文档主题生成模型聚类

13.8 谱聚类


【第十三章:Sentosa_DSML社区版-机器学习聚类】

13.1 KMeans聚类

1.算子介绍

        KMeans聚类算子(k-means clustering algorithm:k均值聚类算法)是一种迭代求解的聚类分析算法,其步骤是随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类的聚类中心会根据聚类中现有的对象被重新计算。这个过程将不断重复直到满足某个终止条件。

2.算子类型

        机器学习/聚类算子。

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

k

聚类数目

必填

Int

2

>=2

k-means 聚类最终创建的簇的数目

max_iter

最大迭代次数

必填

Int

20

>0

最大迭代次数

tolerance

收敛偏差

必填

Double

0.0001

>0

收敛偏差

init_mode

初始化算法

必选

String

k-means||

“random”,“k-means||”中的一个

初始化算法类型,可选“random”,“k-means||”

init_steps

k-means||算法的步数

必填

Int

2

>0 并且只在 init_mode 为“k-means||”时让用户设置

“k-means||”算法的步数

Wight

权重列设置

非必填

String

在建模时,有时不同的样本可能有不同的权重。我们需要支持用户在建模时指定权重列。

feature_weight

是否计算特征重要性

必填

Boolean

单选:是,否

是否计算特征重要性

show_pie_chart

是否显示聚类大小饼状图

必填

Boolean

单选:是,否

是否显示聚类大小饼状图

show_distribution_mpa

是否显示聚类分布图

必填

Boolean

单选:是,否

是否显示聚类分布图

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作

(2)算子属性设置

        KMeans算子属性界面如图所示

KMeans属性界面

        聚类中心点有两种初始化方法:随机初始化和“k - means||”算法。当使用“k - means||”算法进行中心点初始化时,需要设置“k - means||”算法的步数参数。

(3)算子的运行

        KMeans为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等),然后接一个KMeans算子,右击算子,点击运行,得到KMeans模型。

运行KMeans算子获得KMeans模型

        得到模型后右击模型,可以查看模型信息。模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的聚类结果进行评估。

KMeans模型算子流

        右击模型,查看模型的模型信息

KMeans模型信息

        模型的运行结果如图所示

KMeans模型运行结果

        模型的评估结果如图所示

KMeans模型模型评估结果

13.2 二分KMeans聚类

1.算子介绍

        二分KMeans(BuildBKMeansnode)算法是对K-means的改进,防止聚类陷入局部最优解。它的主要思想是:首先将所有点作为一个簇,然后将该簇一分为二。之后选择能最大限度降低聚类代价函数的簇划分为两个簇。以此进行下去,直到簇的数目等于用户给定的数目k为止。

2.算子类型

        机器学习/聚类算子。

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

k

聚类数目

必填

Int

4

>=2

聚类数目

max_iter

最大迭代次数

必填

Int

20

>0

最大迭代次数

min_divisible_cluster_size

最小可分割簇数目

必填

Double

1.0

>0.0

最小可试用集群大小,如果大于1则为最小点数,如果<1则为最小比例

Wight

权重列设置

非必填

String

在建模时,有时不同的样本可能有不同的权重。我们需要支持用户在建模时指定权重列。

feature_weight

是否计算特征重要性

必填

Boolean

单选:是,否

是否计算特征重要性

show_pie_chart

是否显示聚类大小饼状图

必填

Boolean

单选:是,否

是否显示聚类大小饼状图

show_distribution_mpa

是否显示聚类分布图

必填

Boolean

单选:是,否

是否显示聚类分布图

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作

(2)算子属性设置

        二分KMeans算子属性界面如图所示

二分KMeans属性界面

(3)算子的运行

        二分KMeans为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等),然后接一个二分KMeans算子,右击算子,点击运行,得到二分KMeans模型。

运行二分KMeans算子获得二分KMeans模型

        得到模型后右击模型,可以查看模型信息。模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的聚类结果进行评估。

二分KMeans模型算子流

        右击模型,查看模型的模型信息,如图所示。

二分KMeans模型信息

        模型的运行结果如图所示

二分KMeans模型运行结果

        模型的评估结果如图所示

二分KMeans模型评估结果

13.3 高斯混合聚类

1.算子介绍

        高斯混合模型(BuildGMNode)就是用高斯概率密度函数(正态分布曲线)精确地量化事物,它是一个将事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。高斯混合模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,它是一个将事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。

2.算子类型

        机器学习/聚类算子。

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

k

高斯函数的数量

必填

Int

2

>1

混合模型中独立高斯函数的个数。必须大于1。默认值:2。

max_iter

最大迭代次数

必填

Double

100

>0

最大迭代次数

tol

收敛偏差

必填

Double

0.000001

>0

收敛偏差

Wight

权重列设置

非必填

String

在建模时,有时不同的样本可能有不同的权重。我们需要支持用户在建模时指定权重列。

feature_weight

是否计算特征重要性

必填

Boolean

单选:是,否

是否计算特征重要性

show_pie_chart

是否显示聚类大小饼状图

必填

Boolean

单选:是,否

是否显示聚类大小饼状图

show_distribution_mpa

是否显示聚类分布图

必填

Boolean

单选:是,否

是否显示聚类分布图

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作

(2)算子属性设置

        高斯混合模型属性界面如图所示

高斯混合模型属性界面

(3)算子的运行

        高斯混合模型为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等),然后接一个高斯混合模型算子,右击算子,点击运行,得到高斯混合模型的模型。

运行高斯混合模型算子获得高斯混合模型的模型

        得到模型后右击模型,可以查看模型信息。模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的聚类结果进行评估。

高斯混合模型的模型算子流

        右击模型,查看模型的模型信息

高斯混合模型的模型信息

        模型的运行结果如图所示

高斯混合模型运行结果

        模型的评估结果如图所示

高斯混合模型的模型评估结果

13.4 模糊C均值聚类

1.算子介绍

        模糊C均值聚类算法 fuzzy c-means algorithm (FCMA)或称( FCM)。它是一种基于划分的聚类算法,它的思想就是使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小。它除了给出某一样本的具体分类,还可以给出它隶属于每一样本的隶属度。更方便用户对聚类结果有更深入的判断。

2.算子类型

        机器学习/聚类算子

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

clusters_num

聚类数目

必选

Integer

3

>2

聚类数目

max_iter

最大迭代次数

必选

Integer

100

>=1

最大迭代次数

epsilon

迭代终止判定准则

必选

Double

0.1

0<x<1

迭代中止判定准则

fuzzyness_coefficient

隶属度因子

必选

Double

2.0

>=2.0

隶属度因子

feature_weight

是否计算特征重要性

必填

Boolean

单选:是,否

是否计算特征重要性

show_pie_chart

是否显示聚类大小饼状图

必填

Boolean

单选:是,否

是否显示聚类大小饼状图

show_distribution_mpa

是否显示聚类分布图

必填

Boolean

单选:是,否

是否显示聚类分布图

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作

(2)算子属性设置

        模糊C均值模型属性界面如图所示

模糊C均值模型属性界面

        其中迭代终止判定准则表示迭代后中心点坐标的改变量小于0.1时迭代终止。隶属度因子为代价函数中隶属度的加权指数。

(3)算子的运行

        模糊C均值聚类模型为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等),然后接一个模糊C均值聚类模型算子,右击算子,点击运行,得到模糊C均值聚类的模型。

运行模糊C均值聚类算子获得模糊C均值聚类模型

        得到模型后右击模型,可以查看模型信息。模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的聚类结果进行评估。

模糊C均值聚类模型的算子流

        右击模型,查看模型信息

模糊C均值聚类模型的模型信息

        模型的运行结果如图所示

模糊C均值聚类模型的运行结果

        模型的评估结果如图所示

模糊C均值聚类模型的评估结果

13.5 Canopy聚类

1.算子介绍

        Canopy算法也是一种常用的聚类算法,它的一种快速粗聚类算法,优势是用户不用事先指定聚类数目。用户需要指定两个距离阈值,T1,T2,且T1>T2。可以认为T2为核心聚类范围,T1为外围聚类范围。每一个训练样本都属于一个确定的核心聚类范围,但可以属于多个外围聚类范围。

2.算子类型

        机器学习/聚类算子

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

T1

T1值

必填

Double

100.0

>0.0 且 >=T2

Canopy算法T1值

T2

T2值

必填

Double

1.0

>0.0 且 <=T1

Canopy算法T2值

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作。

(2)算子属性设置

        Canopy聚类算子的属性界面如图所示

Canopy聚类算子属性界面

(3)算子的运行

        Canopy聚类算子为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等),然后接一个Canopy聚类算子,右击算子,点击运行,得到Canopy聚类算子的模型。

运行Canopy聚类算子获得Canopy聚类模型

        得到模型后右击模型,可以查看模型信息。模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的聚类结果进行评估。

Canopy聚类模型的算子流

        右击模型,查看模型信息

Canopy聚类模型信息

        模型的运行结果如图所示。

Canopy聚类模型的运行结果

        模型的评估结果如图所示

Canopy聚类模型的评估结果

        常见问题解答

        1. 分类结果过多(超过100种)

        该算子建模后,生成过多的分类结果,造成算子报错。

13.6 Canopy-KMeans聚类

1.算子介绍

        Canopy-Kmeans 是结合Canopy和Kmeans两种聚类算法的优势,首先利用Canopy聚类先对数据进行快速“粗”聚类,得到k值后再使用K-means进行进一步“细”聚类。这样既提高聚类算法性能,也不用用户提前指定聚类具体个数。

2.算子类型

        机器学习/聚类算子

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

T1

T1值

必填

Double

100.0

>0.0 且 >=T2

Canopy算法T1值

T2

T2值

必填

Double

1.0

>0.0 且 <=T1

Canopy算法T2值

max_iter

最大迭代次数

必填

Int

20

>0

最大迭代次数

tolerance

收敛偏差

必填

Double

0.0001

>0.0

收敛偏差

feature_weight

是否计算特征重要性

必填

Boolean

单选:是,否

是否计算特征重要性

show_pie_chart

是否显示聚类大小饼状图

必填

Boolean

单选:是,否

是否显示聚类大小饼状图

show_distribution_mpa

是否显示聚类分布图

必填

Boolean

单选:是,否

是否显示聚类分布图

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作。

(2)算子属性设置

        Canopy-KMeans聚类算子的属性界面如图所示

Canopy-KMeans聚类算子属性界面

        Canopy-KMeans聚类算子用Canopy算法确定聚类的初始中心点,再用KMeans算法进行细聚类。

(3)算子的运行

        Canopy-KMeans聚类算子为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等),然后接一个Canopy-KMeans聚类算子,右击算子,点击运行,得到Canopy-KMeans聚类算子的模型。

运行Canopy-KMeans聚类算子获得Canopy-KMeans聚类模型

        得到模型后右击模型,可以查看模型信息。模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的聚类结果进行评估。

Canopy-KMeans聚类模型的算子流

        右击模型,查看模型信息

Canopy-KMeans聚类模型信息

        模型的运行结果如图所示

Canopy-KMeans聚类模型的运行结果

        模型的评估结果如图所示

Canopy-KMeans聚类模型的评估结果

13.7 文档主题生成模型聚类

1.算子介绍

        文档主题生成模型聚类(BuildLDANode)也称为一个三层贝叶斯概率模型,包含词、主题和文档三层结构。所谓生成模型,就是说,我们认为一篇文章的每个词都是通过“以一定概率选择了某个主题,并从这个主题中以一定概率选择某个词语”这样一个过程得到。文档到主题服从多项式分布,主题到词服从多项式分布。

2.算子类型

        机器学习/聚类算子

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

k

主题数量

必填

Int

10

>1

推断的主题(集群)的数量。一定是> 1。默认值:10。

max_iter

最大迭代次数

必填

Int

20

>0

最大迭代次数

sub_sampling_rate

采样率

必填

Double

0.05

optimizer=online 且(0,1)

仅适用于优化器为online模式,在每次梯度下降迭代中被采样和使用的语料在(0,1)范围内的分数。

learning_decay

学习速率

必填

Double

0.51

optimizer=online 且(0.5,1.0]

指数衰减速率,仅适用于优化器为online模式,这个值应该在(0.5,1.0]之间,已保证渐进收敛

learning_offset

学习偏移量

必填

Int

1024

optimizer=online且>0

仅适用于优化器online。(正)学习参数,降低早期迭代。 越大的值使早期迭代次数减少。

optimize_doc_concentration

是否优化alpha

必选

Boolean

单选:true false

是否优化文档主题参数

checkpoint_interval

检查点间隔

必填

Int

10

>= 1或者=-1

设置检查点间隔(>= 1)或禁用检查点(-1)的参数。

feature_weight

是否计算特征重要性

必填

Boolean

单选:是,否

是否计算特征重要性

show_pie_chart

是否显示聚类大小饼状图

必填

Boolean

单选:是,否

是否显示聚类大小饼状图

show_distribution_mpa

是否显示聚类分布图

必填

Boolean

单选:是,否

是否显示聚类分布图

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作

(2)算子属性设置

        文档主题生成模型的属性界面如图所示

文档主题生成模型聚类属性界面

(3)算子的运行

        文档主题生成模型为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等),然后接一个文档主题生成模型,右击算子,点击运行,得到文档主题生成模型的模型。

运行文档主题生成模型聚类算子获得模型

        得到模型后右击模型,可以查看模型信息。模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的聚类结果进行评估。

文档主题生成模型聚类的模型算子流

        右击模型,查看模型信息

文档主题生成模型聚类的模型信息

        模型的运行结果如图所示

文档主题生成模型聚类的模型运行结果

        模型的评估结果如图所示

文档主题生成模型聚类的模型评估结果

12.8 DBSCAN聚类

1.算子介绍

        DBSCAN (Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法。它将簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域划分为簇,并可在噪声的空间数据库中发现任意形状的聚类。该算法利用基于密度的聚类的概念,即要求聚类空间中的一定区域内(用Eps定义出的半径)所包含对象(点或其他空间对象)的数目不小于某一给定阈值(用MinPts定义的聚类点数)。

2.算子类型

        机器学习/聚类算子

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

maxDistance

邻域半径R(>0)

必填

Double

10

>0

邻域半径R

minPoints

密度邻域的最小实例数(>0)

必填

Int

10

>0

密度邻域的最小实例数

feature_weight

是否计算特征重要性

必填

Boolean

单选:是,否

是否计算特征重要性

show_pie_chart

是否显示聚类大小饼状图

必填

Boolean

单选:是,否

是否显示聚类大小饼状图

show_distribution_mpa

是否显示聚类分布图

必填

Boolean

单选:是,否

是否显示聚类分布图

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作

(2)算子属性设置

        DBSCAN算子属性界面如图所示

DBSCAN属性界面

(3)算子的运行

        DBSCAN为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等),然后接一个DBSCAN算子,右击算子,点击运行,得到DBSCAN模型。

运行DBSCAN算子获得DBSCAN模型

        得到模型后右击模型,可以查看模型信息。模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的聚类结果进行评估。

DBSCAN模型算子流

        右击模型,查看模型的模型信息

DBSCAN模型信息

        模型的运行结果如图所示

DBSCAN模型运行结果

        模型的评估结果如图所示

DBSCAN模型模型评估结果

13.8 谱聚类

1.算子介绍

        谱聚类是从图论中演化出来的算法,它将聚类问题转换成一个无向加权图的多路划分问题。主要思想是把所有数据点看做是一个无向加权图 G = ( V,E ) 的顶点 V ,E 表示两点间的权重,数据点之间的相似度越高权重值越大。然后根据划分准则对所有数据点组成的图进行切图,使切图后不同的子图间的边权重和尽可能低,而子图内的边权重和尽可能高,从而实现聚类的效果。

2.算子类型

        机器学习/聚类算子

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

Input_list

需要计算的列

必填

Array

列名

需要参与计算的列名

Sigma

Sigma系数

必填

Double

0.05

>0

相似度矩阵计算系数

K

聚类个数

必填

Int

2

>1

聚类的类别数

max_iter

最大迭代次数

必填

Int

3

>0

最大迭代次数

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作

(2)算子属性设置

        谱聚类算子属性界面如图所示 

DBSCAN属性界面

(3)算子的运行

        谱聚类算子对输入数据计算相似度,然后聚类,输出聚类类别

谱聚类算子执行流程

        执行算子流得到结果

谱聚类算子流执行结果


 为了非商业用途的科研学者、研究人员及开发者提供学习、交流及实践机器学习技术,推出了一款轻量化且完全免费的Sentosa_DSML社区版。以轻量化一键安装、平台免费使用、视频教学和社区论坛服务为主要特点,能够与其他数据科学家和机器学习爱好者交流心得,分享经验和解决问题。文章最后附上官网链接,感兴趣工具的可以直接下载使用

Sentosa_DSML社区版​​​​​​​​​​​​​​

​​

Sentosa_DSML算子流开发视频

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2151728.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C#基于SkiaSharp实现印章管理(8)

上一章虽然增加了按路径绘制文本&#xff0c;支持按矩形、圆形、椭圆等路径&#xff0c;但测试时发现通过调整尺寸、偏移量等方式不是很好控制文本的位置。相对而言&#xff0c;使用弧线路径&#xff0c;通过弧线起始角度及弧线角度控制文本位置更简单。同时基于路径绘制文本时…

Chainlit集成LlamaIndex实现知识库高级检索(简单融合寻回器)

检索原理 ** 简单融合寻回器 ** 简单融合寻回原理&#xff0c;是利用多个检索器&#xff0c;融合查询最终的结果返回给LLM。此检索器还将通过生成与原始问题相关的问题&#xff0c;用相关问题再次检索多个检索器的数据&#xff0c;把原始问题和相关问题经过多个检索器检索结果…

Relations Prediction for Knowledge Graph Completion using Large Language Models

文章目录 题目摘要简介相关工作方法论实验结论局限性未来工作 题目 使用大型语言模型进行知识图谱补全的关系预测 论文地址&#xff1a;https://arxiv.org/pdf/2405.02738 项目地址&#xff1a; https://github.com/yao8839836/kg-llm 摘要 知识图谱已被广泛用于以结构化格式表…

高级java每日一道面试题-2024年9月20日-分布式篇-什么是CAP理论?

如果有遗漏,评论区告诉我进行补充 面试官: 什么是CAP理论&#xff1f; 我回答: 在Java高级面试中&#xff0c;CAP理论是一个经常被提及的重要概念&#xff0c;它对于理解分布式系统的设计和优化至关重要。CAP理论是分布式系统理论中的一个重要概念&#xff0c;它描述了一个分…

【数学分析笔记】第3章第2节 连续函数(4)

3. 函数极限与连续函数 3.2 连续函数 3.2.9 反函数的连续性定理 【定理3.2.2】【反函数连续性定理】设 y f ( x ) yf(x) yf(x)在闭区间 [ a , b ] [a,b] [a,b]上连续且严格单调增加&#xff0c;设 f ( a ) α , f ( b ) β f(a)\alpha,f(b)\beta f(a)α,f(b)β&#xff0…

仓颉编程入门

#体验华为仓颉编程语言# 仓颉发布的第一时间&#xff0c;就申请了测试。昨天发现申请通过 &#xff0c;果断下载SDK体验一下。 废话不多说&#xff0c;从下载完开始&#xff0c;下面这个图&#xff0c;就是下载的文件&#xff1a; 看文件夹样子跟c/c套路差不多。bin目录是cjc…

linux安装nginx+前端部署vue项目(实际测试react项目也可以)

&#x1f9f8;本篇博客作者测试上线过不下5个项目&#xff0c;包括单纯的静态资源&#xff0c;vue项目和react项目&#xff0c;包好用&#xff0c;请放心使用 &#x1f4dc;作者首页&#xff1a;dream_ready-CSDN博客 &#x1f4dc;有任何问题都可以评论留言&#xff0c;作者将…

什么是大模型的泛化能力?

大模型的泛化能力指的是模型在未见过的数据上表现的能力&#xff0c;即模型不仅能在训练数据上表现良好&#xff0c;也能在新的、未知的数据集上保持良好的性能。这种能力是衡量机器学习模型优劣的重要指标之一。 泛化能力的好处包括但不限于&#xff1a; 提高模型的适应性&a…

基于uniapp的民宿酒店预订系统(后台+小程序)

&#x1f497;博主介绍&#x1f497;&#xff1a;✌在职Java研发工程师、专注于程序设计、源码分享、技术交流、专注于Java技术领域和毕业设计✌ 温馨提示&#xff1a;文末有 CSDN 平台官方提供的老师 Wechat / QQ 名片 :) Java精品实战案例《700套》 2025最新毕业设计选题推荐…

F28335中断系统

1 中断介绍 1.1 中断概念 1.2 TMS320F28335 中断概述

CUDA并行架构

一、CUDA简介 CUDA(Compute Unified Device Architecture)是一种由NVIDIA推出的通用并行计算架构&#xff0c;该架构使GPU(Graphics Processing Unit)能够对复杂的计算问题做性能速度优化。 二、串并行模式 高性能计算的关键是利用多核处理器进行并行计算。 串行模式&#…

使用LangGPT提示词让大模型比较浮点数

使用LangGPT提示词让大模型比较浮点数 背景介绍环境准备创建虚拟环境安装一些必要的库安装其他依赖部署大模型启动图形交互服务设置提示词与测试 LangGPT结构化提示词 背景介绍 LLM在对比浮点数字时表现不佳&#xff0c;经验证&#xff0c;internlm2-chat-1.8b (internlm2-cha…

Excel-时间取整,工作有效时长计算

在计算考勤时&#xff0c;打卡时间不是整点&#xff0c;上班时间是遵循整点开始计算的&#xff0c;员工提前打卡&#xff0c;所以要用到时间向上取整。 上班取整&#xff1a; 使用CEILING函数可实现该需求&#xff0c;参考以下公式&#xff0c;第一个参数为上班打卡时间&#…

MySQL篇(窗口函数/公用表达式(CTE))(持续更新迭代)

目录 讲解一&#xff1a;窗口函数 一、简介 二、常见操作 1. sumgroup by常规的聚合函数操作 2. sum窗口函数的聚合操作 三、基本语法 1. Function(arg1,..., argn) 1.1. 聚合函数 sum函数&#xff1a;求和 min函数 &#xff1a;最小值 1.2. 排序函数 1.3. 跨行函数…

一文读懂SpringCLoud

一、前言 只有光头才能变强 认识我的朋友可能都知道我这阵子去实习啦&#xff0c;去的公司说是用SpringCloud(但我觉得使用的力度并不大啊~~)… 所以&#xff0c;这篇主要来讲讲SpringCloud的一些基础的知识。(我就是现学现卖了&#xff0c;主要当做我学习SpringCloud的笔记吧&…

英集芯IP5902:集成电压可调异步升压转换充电管理功能的8位MCU芯片

英集芯IP5902是一款集成了9V异步升压转换、锂电池充电管理及负端NMOS管的8-bit MCU芯片&#xff0c;外壳采用了SOP16封装形式&#xff0c;高集成度和丰富的功能使其在应用时只需很少的外围器件&#xff0c;就能有效减小整体方案的尺寸&#xff0c;降低BOM成本&#xff0c;为小型…

Vue使用axios实现Ajax请求

1、什么是 axios 在实际开发过程中&#xff0c;浏览器通常需要和服务器端进行数据交互。而 Vue.js 并未提供与服务器端通信的接口。从 Vue.js 2.0 版本之后&#xff0c;官方推荐使用 axios 来实现 Ajax 请求。axios 是一个基于 promise 的 HTTP 客户端。 关于 promise 的介绍…

C#开源的一个能利用Windows通知栏背单词的软件

前言 今天给大家推荐一个C#开源且免费的能利用Windows通知栏背单词的软件&#xff0c;可以让你在上班、上课等恶劣环境下安全隐蔽地背单词&#xff08;利用摸鱼时间背单词的软件&#xff09;&#xff1a;ToastFish。 操作系统要求 目前该软件只支持Windows10及以上系统&…

Scrapy爬虫实战——某瓣250

# 按照我个人的习惯&#xff0c;在一些需要较多的包作为基础支撑的项目里&#xff0c;习惯使用虚拟环境&#xff0c;因为这样能极大程度的减少出现依赖冲突的问题。依赖冲突就比如A、B、C三个库&#xff0c;A和B同时依赖于C&#xff0c;但是A需要的C库版本大于N&#xff0c;而B…

Linux系统查找文件的所属目录

在Linux下查找文件的所属目录方法较多&#xff0c;既可以在图形桌面系统中用搜索功能查找文件&#xff0c;也可以在字符终端窗口中用不同的命令查找不同类型文件并显示其所在目录&#xff0c;针对不同的文件类型&#xff0c;有不同的命令。 一、在图形桌面系统中查找 如图1&a…