《线性代数》常用公式定理总结

news2025/1/16 8:19:07

文章目录

  • 1 行列式
  • 2 矩阵
  • 3 齐次线性方程组
  • 4 非齐次线性方程组
  • 5 公共解问题
  • 6 同解问题
  • 7 抽象型方程组
    • 7.1 矩阵A各行元素之和均为0
    • 7.2 方程组解的个数与秩的关系
    • 7.3 选择题常考
    • 7.4 证线性无关
    • 7.5 证线性相关
    • 7.6 线性方程组的几何意义
    • 7.7 线性表出
  • 8 向量空间
    • 8.1 向量空间中的坐标
    • 8.2 过渡矩阵
    • 8.3 坐标变换
  • 9 特征值特征向量
    • 9.1 施密特正交化
    • 9.2 用特征值和特征向量求A
  • 10 相似
    • 10.1 相似的五个性质
    • 10.2 相似的结论
    • 10.3 相似对角化
  • 11 实对称矩阵(必能相似对角化)
  • 12 正交矩阵
  • 13 二次型
    • 13.1 惯性定理
    • 13.2 配方法
    • 13.3 正交变换法
      • 13.3.1 常规计算
      • 13.3.2 反求参数,A或(f)
      • 13.3.3 最值问题
      • 13.3.4 几何应用
  • 14 合同
    • 14.1 实对称矩阵的合同
  • 15 正定二次型(正定矩阵)
  • 16 反对称矩阵

1 行列式

1.1 克拉默法则

在这里插入图片描述

1.2 基本性质

  1. 交换性质
    行列式的行列互换,行列式的值不变。

  2. 对角矩阵的行列式
    对于对角矩阵(或更一般的上三角矩阵或下三角矩阵),行列式等于对角线上元素的乘积。 ∣ a 11 0 ⋯ 0 0 a 22 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ a n n ∣ = a 11 a 22 ⋯ a n n \begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix}= a_{11} a_{22} \cdots a_{nn} a11000a22000ann =a11a22ann

  3. 矩阵乘积的行列式
    两个矩阵相乘的行列式等于它们行列式的乘积。

    det ⁡ ( A B ) = det ⁡ ( A ) det ⁡ ( B ) \det(AB) = \det(A) \det(B) det(AB)=det(A)det(B)

  4. 行列互换的行列式
    交换矩阵的两行(或两列),行列式取相反数。

    det ⁡ ( A ) = − det ⁡ ( B ) \det(A) = -\det(B) det(A)=det(B)

  5. 相同行(或列)的行列式
    如果矩阵的两行(或两列)相同,则该行列式为零。

  6. 比例行(或列)的行列式
    如果矩阵的两行(或两列)成比例,则该行列式为零。

  7. 加法性质
    如果矩阵的某一行(或某一列)是两行(或两列)的和,则行列式等于这两行(或两列)分别替换的行列式之和。

  8. 行列式的行数与列数
    行列式仅对方阵(行数等于列数的矩阵)定义。

  9. 行列式与矩阵的转置
    矩阵的行列式等于其转置矩阵的行列式。

    det ⁡ ( A ) = det ⁡ ( A T ) \det(A) = \det(A^T) det(A)=det(AT)

  10. 单位矩阵的行列式
    单位矩阵的行列式为1。

    det ⁡ ( E ) = 1 \det(E) = 1 det(E)=1

  11. 矩阵的行(或列)倍加法不变性
    对矩阵的某一行(或列)进行倍加(即将该行(或列)加上另一行(或列)的某个倍数)操作,行列式不变。

  12. 矩阵的数乘
    如果将矩阵的某一行(或某一列)乘以一个数 c c c,那么行列式等于原行列式乘以 c c c

    det ⁡ ( c A ) = c n det ⁡ ( A ) \det(cA) = c^n \det(A) det(cA)=cndet(A)

1.3 余子式 M i j M_{ij} Mij

余子式是从一个 n × n n \times n n×n矩阵中,删除某一行和某一列后得到的 ( n − 1 ) × ( n − 1 ) (n-1) \times (n-1) (n1)×(n1)矩阵的行列式。

定义
对于一个矩阵 A A A的元素 a i j a_{ij} aij,其对应的余子式 M i j M_{ij} Mij是指从矩阵 A A A中删除第 i i i行和第 j j j列后得到的子矩阵的行列式。

1.4 代数余子式 A i j = ( − 1 ) i + j ⋅ M i j A_{ij} = (-1)^{i+j} \cdot M_{ij} Aij=(1)i+jMij

代数余子式是余子式的带符号版本,用于行列式的展开。具体来说,代数余子式 A i j A_{ij} Aij定义为:

A i j = ( − 1 ) i + j ⋅ M i j A_{ij} = (-1)^{i+j} \cdot M_{ij} Aij=(1)i+jMij
∣ A ∣ = ∑ j = 1 n a i j A i j = ∑ i = 1 n a i j A i j |A|=\sum_{j=1}^na_{ij}A_{ij}=\sum_{i=1}^na_{ij}A_{ij} A=j=1naijAij=i=1naijAij

注意:代数余子式 A i j A_{ij} Aij就是伴随矩阵 A ∗ A^* A的矩阵系数
A ∗ = ( A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋱ ⋮ A 1 n A 2 n ⋯ A n n ) T A^* = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}^T A= A11A12A1nA21A22A2nAn1An2Ann T

在这里插入图片描述
在这里插入图片描述

1.5 具体型行列式计算(化为基本型)

1.5.1 主对角线行列式:主对角元素相乘

1.5.2 副对角线行列式:副对角元素相乘并判断正负号

在这里插入图片描述
在这里插入图片描述

1.5.3 拉普拉斯展开式

在这里插入图片描述

1.5.4 范德蒙德行列式:只看第二行,右减左,全都减,减完乘起来

在这里插入图片描述

1.5.5 加边法:没有明显的公共规律,自己补一个公共规律

在这里插入图片描述

1.5.6 递推法(适用于计算异爪型行列式):高阶→低阶

建立两阶或三阶之间的关系,且每阶的元素分布规律必须相同

1.5.7 数学归纳法(适用于证明题):低阶→高阶

  • 第一数学归纳法(验证1个):验证 n = 1 n=1 n=1时成立,再假设 n = k ( k ≥ 2 ) n=k(k≥2) n=kk2时成立,最后证明 n = k + 1 n=k+1 n=k+1时成立,由此推出对任意 n n n成立
  • 第二数学归纳法(验证2个):验证 n = 1 , n = 2 n=1,n=2 n=1n=2时成立,再假设 n < k n<k n<k时成立,最后证明 n = k n=k n=k时成立,由此推出对任意 n n n成立

用数学归纳法证爪型行列式通式:

  1. n = 1 n=1 n=1
  2. n = 2 n=2 n=2
  3. 假设 n < k n<k n<k时成立
  4. n = k n=k n=k时,按第一列展开得通式形式
  5. 得证

1.5.8 一些处理手段

在这里插入图片描述

1.6 抽象型行列式的计算: a i j a_{ij} aij未给出

1.6.1 用行列式性质

1.6.2 用矩阵知识

在这里插入图片描述

1.6.3 用相似理论

在这里插入图片描述

2 矩阵

2.1 转置、逆、伴随的一些关系式

在这里插入图片描述
在这里插入图片描述

2.2 求 A n A^n An

2.2.1 A为方阵,且r(A)=1

在这里插入图片描述

2.2.2 试算 A 2 A^2 A2(或 A 3 A^3 A3),找规律【归纳法→探索、研究精神!】

在这里插入图片描述

2.2.3 A=B+C用二项展开式

在这里插入图片描述

2.2.4 用相似理论

在这里插入图片描述

2.3 矩阵的伴随

在这里插入图片描述
在这里插入图片描述

求法

简单一点求矩阵的伴随,进而用伴随来求矩阵的逆

在这里插入图片描述

在这里插入图片描述

2.4 矩阵的逆

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

2.5 矩阵的转置

在这里插入图片描述

2.6 初等矩阵(左行右列)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2.7 分块矩阵

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.8 矩阵方程(含未知矩阵X)

在这里插入图片描述

2.9 矩阵方程求解

在这里插入图片描述

2.10 秩

矩阵的秩是其行秩和列秩的值,而行秩与列秩总是相等的。秩决定了矩阵的行向量或列向量的线性独立性,也影响了线性方程组的解的情况(如是否有解以及解的数量)

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在两个向量组中,被表示的向量组的秩不大于表示它的向量组的秩。(即:两向量组中,被表示的向量组的秩不大)

2.11 行向量组等价(两方程组同解问题)

两个行向量组 等价,当且仅当它们能通过一系列初等行变换相互转换。

具体解释

  • 如果矩阵 A A A 和矩阵 B B B 的行向量组等价,这意味着可以通过对 A A A 进行有限次初等行变换,得到 B B B。反之亦然。换句话说, A A A B B B 具有相同的行空间,它们的行向量可以通过相同的线性组合生成。

2.12 维数与向量的关系

  1. 维数

    • 维数 指的是向量中元素的个数。在矩阵中,维数通常指的是向量所在空间的维度。例如,一个在 R m \mathbb{R}^m Rm 空间中的向量有 m m m 个元素。
    • 对于一个线性方程组来说,维数 指的是系数矩阵的行数,也是方程的个数。
  2. 向量个数

    • 向量个数 指的是列向量的个数,通常是系数矩阵的列数,也代表方程中未知数的个数。
  3. 线性相关性

    • 如果矩阵的列数大于行数(向量个数 > 维数),则这些列向量必定线性相关。

假设有一个矩阵 A A A 3 × 4 3 \times 4 3×4 矩阵( 3 3 3 行, 4 4 4 列):

  • 向量的维数是 3 3 3,因为每个列向量有 3 3 3 个元素。
  • 向量的个数是 4 4 4,因为矩阵有 4 4 4 列。
  • 因为 4 > 3 4 > 3 4>3,根据线性代数定理, A A A 的列向量必定是线性相关的。

3 齐次线性方程组

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

4 非齐次线性方程组

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

5 公共解问题

在这里插入图片描述

6 同解问题

  • 行向量组等价是两个方程组同解的充要条件。如果两个线性方程组的增广矩阵的行向量组是等价的(即通过初等行变换可以互相转换),那么这两个方程组一定有相同的解集。这是因为初等行变换不会改变线性方程组的解。
  • 如果矩阵 A A A B B B 行等价,则存在一个可逆矩阵 P P P 使得 P A = B PA = B PA=B 。这表明可以通过对 A A A 进行初等行变换得到 B B B,而这些初等行变换可以表示为一个可逆矩阵 P P P 作用在 A A A 上。
  • 一个行向量代表一个方程,行向量组的一次初等行变换相当于对方程组做了一次同解变形。由于初等行变换不会改变线性方程组的解集,所以两个增广矩阵行向量组等价,意味着它们对应的方程组有相同的解。
  • 列向量的关系则与方程组是否有解密切相关。
  • 若两个方程组互为线性组合,则两个方程组等价。等价的两个方程组一定同解,但同解的两个方程组不一定等价。

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

7 抽象型方程组

7.1 矩阵A各行元素之和均为0

在这里插入图片描述

7.2 方程组解的个数与秩的关系

在这里插入图片描述

7.3 选择题常考

在这里插入图片描述

7.4 证线性无关

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

7.5 证线性相关

在这里插入图片描述

要证线性相关,那么只需要证得有一个系数不为0就能使等式成立即可。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

7.6 线性方程组的几何意义

在这里插入图片描述

在这里插入图片描述
有解情况 \mathbf{有解情况} 有解情况

几何意义代数表达
三平面相交于一点(唯一解) r ( A ) = r ( A ‾ ) = 3 r(A)=r(\overline{A})=3 r(A)=r(A)=3法向量两两正交
三平面相交于一条线 r ( A ) = r ( A ‾ ) = 2 r(A)=r(\overline{A})=2 r(A)=r(A)=2 β 1 , β 2 , β 3 β_1,β_2,β_3 β1,β2,β3两两线性无关(任何两面都不重合)
两平面重合,第三平面与之相交 r ( A ) = r ( A ‾ ) = 2 r(A)=r(\overline{A})=2 r(A)=r(A)=2 β 1 , β 2 , β 3 β_1,β_2,β_3 β1,β2,β3中有两个向量线性相关(存在两个面重合)
三平面重合 r ( A ) = r ( A ‾ ) = 1 r(A)=r(\overline{A})=1 r(A)=r(A)=1

如果三个平面的法向量两两正交,那么对应的线性方程组有唯一解;若此时引入第四个平面,当且仅当第四个平面与前三个平面相交于同一个点时,方程组有唯一解,除此之外无解

无解情况 \mathbf{无解情况} 无解情况

几何意义代数表达
三平面两两 相交 \mathbf{相交} 相交,且交线相互平行 r ( A ) = 2 , r ( A ‾ ) = 3 r(A)=2,r(\overline{A})=3 r(A)=2r(A)=3 n 1 , n 2 , n 3 n_1,n_2,n_3 n1,n2,n3两两线性无关(任何两个面都不相交)
两平面平行,第三张平面与它们 相交 \mathbf{相交} 相交 r ( A ) = 2 , r ( A ‾ ) = 3 r(A)=2,r(\overline{A})=3 r(A)=2r(A)=3 n 1 , n 2 , n 3 n_1,n_2,n_3 n1,n2,n3中有两个向量线性相关(存在两个面平行但不重合)
三张平面相互平行但不重合 r ( A ) = 1 , r ( A ‾ ) = 2 r(A)=1,r(\overline{A})=2 r(A)=1r(A)=2 β 1 , β 2 , β 3 β_1,β_2,β_3 β1,β2,β3两两线性无关(任何两个面都不重合)
两张平面重合,第三张平面与它们平行但不重合 r ( A ) = 1 , r ( A ‾ ) = 2 r(A)=1,r(\overline{A})=2 r(A)=1r(A)=2 β 1 , β 2 , β 3 β_1,β_2,β_3 β1,β2,β3中有两个向量线性相关(存在两个面重合)

7.7 线性表出

在这里插入图片描述

在这里插入图片描述

8 向量空间

在这里插入图片描述
在这里插入图片描述

8.1 向量空间中的坐标

在这里插入图片描述

题型1:要求一个非零向量 b \mathbf{b} b,使得它在两个不同基 { a 1 , a 2 , a 3 } \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\} {a1,a2,a3} { β 1 , β 2 , β 3 } \{\mathbf{β}_1, \mathbf{β}_2, \mathbf{β}_3\} {β1,β2,β3} 下的坐标相同。设 b \mathbf{b} b 在这两个基下的坐标为 ( x 1 , x 2 , x 3 ) (x_1, x_2, x_3) (x1,x2,x3),即:
b = x 1 a 1 + x 2 a 2 + x 3 a 3 \mathbf{b} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 b=x1a1+x2a2+x3a3
b = x 1 β 1 + x 2 β 2 + x 3 β 3 \mathbf{b} = x_1\mathbf{β}_1 + x_2\mathbf{β}_2 + x_3\mathbf{β}_3 b=x1β1+x2β2+x3β3
两式相减,得到
x 1 ( a 1 − β 1 ) + x 2 ( a 2 − β 2 ) + x 3 ( a 3 − β 3 ) = 0 x_1(\mathbf{a}_1 - \mathbf{β}_1) + x_2(\mathbf{a}_2 - \mathbf{β}_2) + x_3(\mathbf{a}_3 - \mathbf{β}_3) = 0 x1(a1β1)+x2(a2β2)+x3(a3β3)=0
为了满足上述等式,并且因为 b \mathbf{b} b 是非零向量,所以 x 1 , x 2 , x 3 x_1, x_2, x_3 x1,x2,x3 至少有一个不为零。这表明 a 1 − β 1 \mathbf{a}_1 - \mathbf{β}_1 a1β1 a 2 − β 2 \mathbf{a}_2 - \mathbf{β}_2 a2β2 a 3 − β 3 \mathbf{a}_3 - \mathbf{β}_3 a3β3 必须是线性相关的。
解齐次方程组
( a 1 − β 1 a 2 − β 2 a 3 − β 3 ) ( x 1 x 2 x 3 ) = ( 0 0 0 ) \begin{pmatrix} \mathbf{a}_1 - \mathbf{β}_1 & \mathbf{a}_2 - \mathbf{β}_2 & \mathbf{a}_3 - \mathbf{β}_3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} (a1β1a2β2a3β3) x1x2x3 = 000

得解坐标 x 1 , x 2 , x 3 x_1, x_2, x_3 x1,x2,x3,从而得到向量 b \mathbf{b} b
b = x 1 a 1 + x 2 a 2 + x 3 a 3 \mathbf{b} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 b=x1a1+x2a2+x3a3

8.2 过渡矩阵

在这里插入图片描述

在这里插入图片描述

8.3 坐标变换

在这里插入图片描述

在这里插入图片描述

9 特征值特征向量

注意:方程组可以有零解,但特征向量决不能是零向量! 注意:方程组可以有零解,但特征向量决不能是零向量! 注意:方程组可以有零解,但特征向量决不能是零向量!
A ∗ 、 A k ( k ≠ − 1 ) 的特征向量不一定是 A 的特征向量 \boldsymbol{A^*}、\boldsymbol{A^k}(k≠-1)的特征向量不一定是\boldsymbol{A}的特征向量 AAk(k=1)的特征向量不一定是A的特征向量
A − 1 、 k A ( k ≠ 0 ) 的特征向量一定是 A 的特征向量 \boldsymbol{A^{-1}}、\boldsymbol{kA}(k≠0)的特征向量一定是\boldsymbol{A}的特征向量 A1kA(k=0)的特征向量一定是A的特征向量

矩阵特征值对应特征向量
A \boldsymbol{A} A λ \boldsymbol{λ} λ α \boldsymbol{α} α
A T \boldsymbol{A^T} AT λ \boldsymbol{λ} λ 重新计算 \boldsymbol{重新计算} 重新计算
将 A 对称化得到 B = A + A T 2 \boldsymbol{将A对称化得到B=\frac{A+A^T}{2}} A对称化得到B=2A+AT 重新计算 \boldsymbol{重新计算} 重新计算 重新计算 \boldsymbol{重新计算} 重新计算
k A \boldsymbol{kA} kA k λ \boldsymbol{kλ} α \boldsymbol{α} α
A k \boldsymbol{A^k} Ak λ k \boldsymbol{λ^k} λk α \boldsymbol{α} α
f ( A ) \boldsymbol{f(A)} f(A) f ( λ ) \boldsymbol{f(λ)} f(λ) α \boldsymbol{α} α
A − 1 \boldsymbol{A^{-1}} A1 1 λ \boldsymbol{\frac{1}{λ}} λ1 α \boldsymbol{α} α
A ∗ \boldsymbol{A^*} A ∣ A ∣ λ \boldsymbol{\frac{|A|}{λ}} λA α \boldsymbol{α} α
P − 1 A P = B \boldsymbol{P^{-1}AP=B} P1AP=B λ \boldsymbol{λ} λ P − 1 α \boldsymbol{P^{-1}α} P1α
P − 1 f ( A ) P = f ( B ) \boldsymbol{P^{-1}f(A)P=f(B)} P1f(A)P=f(B) f ( λ ) \boldsymbol{f(λ)} f(λ) P − 1 α \boldsymbol{P^{-1}α} P1α

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

9.1 施密特正交化

在这里插入图片描述
在这里插入图片描述

9.2 用特征值和特征向量求A

在这里插入图片描述
在这里插入图片描述

10 相似

10.1 相似的五个性质

在这里插入图片描述

10.2 相似的结论

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

10.3 相似对角化

在这里插入图片描述

在这里插入图片描述

11 实对称矩阵(必能相似对角化)

在这里插入图片描述
如果矩阵 A A A 不是实对称矩阵,则不同特征值对应的特征向量不一定相互正交。

在这里插入图片描述

12 正交矩阵

在这里插入图片描述
在这里插入图片描述

13 二次型

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

13.1 惯性定理

在这里插入图片描述
在这里插入图片描述

13.2 配方法

在这里插入图片描述

13.3 正交变换法

13.3.1 常规计算

在这里插入图片描述
在这里插入图片描述

13.3.2 反求参数,A或(f)

13.3.3 最值问题

在这里插入图片描述
在这里插入图片描述

13.3.4 几何应用

二次曲面 f = x T A x = 1 f=x^TAx=1 f=xTAx=1的类型

λ 1 , λ 2 , , λ 3 的符号 λ_1,λ_2,,λ_3的符号 λ1,λ2,,λ3的符号 f ( x 1 , x 2 , x 3 ) = 1 f(x_1,x_2,x_3)=1 f(x1,x2,x3)=1
3正椭球面
2正1负单页双曲面
1正2负双叶双曲面 f = 0 时为锥面 f=0时为锥面 f=0时为锥面
2正1零椭圆柱面
1正1负1零双曲柱面

在这里插入图片描述

14 合同

对于任意的 n × n n \times n n×n 矩阵 A A A B B B,如果存在一个可逆矩阵 C C C 使得:

C T A C = B C^TAC = B CTAC=B

则称矩阵 A A A B B B合同矩阵,并且这个变换叫做合同变换。

变换特点

  1. 行列同步:合同变换中的行变换和列变换可同步进行。

  2. 不改变矩阵的秩:合同变换保持矩阵的秩。

  3. 二次型化简:合同变换常用于二次型的化简,使得原矩阵的结构得到简化,同时保持二次型的性质。

在这里插入图片描述

14.1 实对称矩阵的合同

两个实对称矩阵 A A A B B B 如果是合同的,即存在一个可逆矩阵 C C C 使得 C T A C = B C^TAC = B CTAC=B,那么它们的惯性指数(正惯性指数、负惯性指数和零惯性指数的个数)必须相同

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

15 正定二次型(正定矩阵)

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

正定矩阵

  • 定义:正定矩阵是一个对称矩阵,并且对于任意非零向量 x \mathbf{x} x,有 x T A x > 0 \mathbf{x}^T A \mathbf{x} > 0 xTAx>0
  • 性质:正定矩阵的特征值都是正数,通常用于优化问题,表示能量最小化等场景。能量最小化通常与目标函数的最小化相关联。比如在机器学习中的损失函数或在经济学中的成本函数,这些函数的最小值往往代表最佳解。正定矩阵在这种场景中非常重要,因为它对应的二次型函数如果是正定的,那么优化问题的目标函数就有一个唯一的最小值。这个最小值就是能量最小化的解。

二次型矩阵

  • 定义:二次型矩阵是描述二次型函数的对称矩阵,形式为 f = x T A x f= \mathbf{x}^T A \mathbf{x} f=xTAx,其中 A A A 是对称矩阵。
  • 性质:二次型矩阵可以是正定的、半正定的、负定的或不定的,具体取决于函数 f f f 的符号情况。

两者的区别

  • 范围不同:正定矩阵是特定类型的二次型矩阵,即二次型矩阵中的一种特殊情况。
  • 判别标准:正定矩阵要求对于所有非零向量 x \mathbf{x} x x T A x \mathbf{x}^T A \mathbf{x} xTAx 必须大于零;而二次型矩阵可以根据其对应二次型的符号不同,具有不同的性质。

16 反对称矩阵

在这里插入图片描述

反对称矩阵(也称为斜对称矩阵)是一类特殊的矩阵,其定义是矩阵的转置等于其负矩阵,即对于矩阵 ( A ) 来说,反对称条件为:

A T = − A A^T = -A AT=A

具体来说,矩阵中的元素满足:
a i j = − a j i a_{ij} = -a_{ji} aij=aji
这意味着矩阵的对角线元素必须为零(即 a i i = 0 a_{ii} = 0 aii=0),因为 a i i = − a i i a_{ii} = -a_{ii} aii=aii,这只有在 a i i = 0 a_{ii} = 0 aii=0 时成立。例如:一个 3 × 3 3×3 3×3 的反对称矩阵为:
A = ( 0 a 12 a 13 − a 12 0 a 23 − a 13 − a 23 0 ) A = \begin{pmatrix} 0 & a_{12} & a_{13} \\ -a_{12} & 0 & a_{23} \\ -a_{13} & -a_{23} & 0 \end{pmatrix} A= 0a12a13a120a23a13a230

反对称矩阵的性质:

  1. 对角线元素为零:反对称矩阵的对角线元素必须为零。
  2. 特征值性质:反对称矩阵的特征值要么是零,要么是纯虚数(对于实数反对称矩阵)。
  3. 奇数维度的行列式为零:如果反对称矩阵的维度是奇数,那么其行列式为零。这是因为反对称矩阵在奇数维度下的非零特征值成对出现,每对特征值互为相反数,导致行列式为零。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2149834.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++ | 二叉搜索树

前言 本篇博客讲解c中的继承 &#x1f493; 个人主页&#xff1a;普通young man-CSDN博客 ⏩ 文章专栏&#xff1a;C_普通young man的博客-CSDN博客 ⏩ 本人giee: 普通小青年 (pu-tong-young-man) - Gitee.com 若有问题 评论区见&#x1f4dd; &#x1f389;欢迎大家点赞&…

【大模型】初识大模型(非常详细)零基础入门到精通,收藏这一篇就够了_大模型入门

大模型的定义 大模型是指具有数千万甚至数亿参数的深度学习模型。近年来&#xff0c;随着计算机技术和大数据的快速发展&#xff0c;深度学习在各个领域取得了显著的成果&#xff0c;如自然语言处理&#xff0c;图片生成&#xff0c;工业数字化等。为了提高模型的性能&#xf…

MeterSphere的一次越权审计

1 MeterSphere简介 MeterSphere是一个一站式开源持续测试平台&#xff0c;它提供了测试跟踪、接口测试、UI测试和性能测试等功能。它全面兼容JMeter、Selenium等主流开源标准&#xff0c;助力开发和测试团队实现自动化测试&#xff0c;加速软件的高质量交付。MeterSphere 的特点…

Java 微服务框架 HP-SOA v1.1.4

HP-SOA 功能完备&#xff0c;简单易用&#xff0c;高度可扩展的Java微服务框架。 项目主页 : https://www.oschina.net/p/hp-soa下载地址 : https://github.com/ldcsaa/hp-soa开发文档 : https://gitee.com/ldcsaa/hp-soa/blob/master/README.mdQQ Group: 44636872, 66390394…

解决selenium爬虫被浏览器检测问题

文章目录 专栏导读1.问题解析2.代码解析(Edge/Chrome通用)2.1 设置Edge浏览器选项:2.2 尝试启用后台模式2.3 排除启用自动化模式的标志2.4 禁用自动化扩展2.5 设置用户代理2.6 实例化浏览器驱动对象并应用配置2.7 在页面加载时执行JavaScript代码 3.完整代码&#xff08;可直接…

[ IDE ] SEGGER Embedded Studio for RISC-V

一、FILE 二、Edit 三、View 四、Search 五、Navigate 六、Project 七、Build 7.1 编译 先选择一个目标类型&#xff0c;再选择编译。 八、Debug 九、Target 十、Tools 10.1 自定义快捷键 点击菜单项&#xff0c;通过Tools –> Options –> Keyboard&#xff0c;实现自…

初识Linux · 环境变量

目录 前言&#xff1a; 命令行参数 环境变量 直接看现象 更多的环境变量 尝试理解环境变量 前言&#xff1a; 今天介绍的是一个较为陌生的名词&#xff0c;环境变量&#xff0c;在学习环境变量之前&#xff0c;我们需要一定的预备知识&#xff0c;这个预备知识是命令行参…

HarmonyOS学习(十三)——数据管理(二) 关系型数据库

文章目录 1、基本概念2、运行机制3、默认配置与限制4、接口说明5、实战&#xff1a;开发“账本”5.1、创建RdbStore5.2、创建数据库5.3、增加数据5.4、删除数据5.5、修改数据5.6、查询数据5.7、备份数据库5.8、恢复数据库5.9、删除数据库 官方文档地址&#xff1a; 通过关系型…

堆的向下调整算法和TOPK问题

目录 1.什么是堆&#xff1f; 1.1 向下调整建堆的时间复杂度计算 1.2 堆的结构体设计 2.堆的功能实现&#xff1a; 2.1 堆的插入&#xff1a; 2.2 堆的删除&#xff1a; 2.3 堆排序&#xff1a; 2.4 向下调整建堆&#xff1a; 2.5 TOPK问题&#xff1a; 2.6 向上调整算…

对接金蝶云星空调用即时库存信息查询API(附JAVA实现)

文章目录 前言准备工作获取第三方授权权限与授权配置信息集成金蝶云SDK调用实现备注前言 对于有自己商品信息管理后台并且使用金蝶ERP系统管理物料的商家来说,将金蝶上物料的库存信息同步到管理后台就可以不用去金蝶上确认库存了,可以大大简化管理后台的库存变更工作,这篇文…

Call OpenAI API with Python requests is missing a model parameter

题意&#xff1a;使用 Python requests 调用 OpenAI API 时缺少 model 参数。 问题背景&#xff1a; Im trying to call OpenAI API from Python. I know they have their own openai package, but I want to use a generic solution. I chose the requests package for its f…

通义千问重磅开源Qwen2.5,性能超越Llama

Qwen2.5 新闻 9月19日云栖大会&#xff0c;阿里云CTO周靖人发布通义千问新一代开源模型Qwen2.5&#xff0c;旗舰模型Qwen2.5-72B性能超越Llama 405B&#xff0c;再登全球开源大模型王座。Qwen2.5全系列涵盖多个尺寸的大语言模型、多模态模型、数学模型和代码模型&#xff0c;每…

TransUNet: 通过Transformer的视角重新思考U-Net架构在医学图像分割中的设计|文献速递-Transformer架构在医学影像分析中的应用

Title 题目 TransUNet: Rethinking the U-Net architecture design for medical imagesegmentation through the lens of transformers TransUNet: 通过Transformer的视角重新思考U-Net架构在医学图像分割中的设计 01 文献速递介绍 卷积神经网络&#xff08;CNNs&#xff…

计算机毕业设计之:教学平台微信小程序(

博主介绍&#xff1a; ✌我是阿龙&#xff0c;一名专注于Java技术领域的程序员&#xff0c;全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师&#xff0c;我在计算机毕业设计开发方面积累了丰富的经验。同时&#xff0c;我也是掘金、华为云、阿里云、InfoQ等平台…

生信初学者教程(四):软件

文章目录 RRstudioLinux系统其他软件本书是使用R语言编写的教程,用户需要下载R和RStudio软件用于进行分析。 版权归生信学习者所有,禁止商业和盗版使用,侵权必究 R R语言是一种免费的统计计算和图形化编程语言,是一种用于数据分析和统计建模的强大工具。它具有丰富的统计…

CSP-CCF★201912-2回收站选址★

一、问题描述 二、解答 代码&#xff1a; #include<iostream> #include<map> using namespace std; struct rubbish{int x;int y; }rub[1000]; int n; void input(){cin>>n;for(int i0;i<n;i){cin>>rub[i].x>>rub[i].y;} } bool has(int p,…

【machine learning-八-可视化loss funciton】

可视化lossfunction loss funciton可视化损失函数等高图 loss funciton 上一节讲过损失函数&#xff0c;也就是代价函数&#xff0c;它是衡量模型训练好坏的指标&#xff0c;对于线性回归来说&#xff0c;模型、参数、损失函数以及目标如下&#xff1a;、 损失函数的目标当然…

什么品牌超声波清洗机质量好?四大绝佳超声波清洗机品牌推荐!

在快节奏的现代生活中&#xff0c;个人物品的清洁卫生显得至关重要。眼镜、珠宝饰品、手表乃至日常餐厨用具&#xff0c;这些频繁接触的物品极易累积污渍与细菌。拿眼镜为例&#xff0c;缺乏定期清洁会让油渍与尘埃积累&#xff0c;进而成为细菌的温床&#xff0c;靠近眼睛使用…

SCDN是服务器吗?SCDN防御服务器有什么特点?

SCDN确实具有一定的防DDoS攻击能力&#xff0c;SCDN防御服务器有什么特点&#xff1f;高防SCDN通过结合内容分发网络&#xff08;CDN&#xff09;和分布式拒绝服务&#xff08;DDoS&#xff09;防护技术&#xff0c;提供了更全面的网络保护措施。在充满网络攻击的互联网时代&am…

dev c++输出中文乱码解决 printf乱码解决

把编码换成utf8就行 打开eiditor options