效果:
代码:
import matplotlib.pyplot as plt
import numpy as np
def mountain_plot(data_dict, colors=None):
if colors is None:
colors = get_colors_from_map(len(data_dict), "Spectral")
x = list(data_dict.keys())
# Y轴位置
y_positions = [2 * i for i in range(len(x))]
# 创建图形
fig, axs = plt.subplots(figsize=(8, 12))
# 为每个月绘制核密度曲线,并水平错开显示
for i, month in enumerate(list(data_dict.keys())):
# 核密度估计
density, bins = np.histogram(data_dict[month], bins=30, density=True)
bins = 0.5 * (bins[1:] + bins[:-1]) # 转换为 bin 的中心
# 每个月份的曲线位置偏移
axs.fill_between(bins, y_positions[i] + density, y_positions[i], facecolor=colors[i], alpha=0.7)
axs.plot(bins, y_positions[i] + density, color=colors[i], lw=1.5)
# 设置月份作为Y轴标签
axs.set_yticks(y_positions)
axs.set_yticklabels(x)
# 添加横轴的网格线
axs.grid(axis='y', linewidth=1, color='gray', alpha=0.2)
# 去掉边框线
axs.spines['top'].set_visible(False)
axs.spines['bottom'].set_visible(False)
axs.spines['right'].set_visible(False)
axs.spines['left'].set_visible(False)
# 显示图像
plt.tight_layout()
plt.show()
if __name__ == '__main__':
# 模拟数据生成函数,基于正态分布
def generate_trend_data(size=1000):
np.random.seed(0)
# 前半段平稳
trend = np.linspace(0, 0.3, size // 2)
# 后半段波动较大
trend = np.concatenate([trend, np.random.normal(0.1, 0.5, size // 2)])
return trend
def generate_normal_data(mean, std=1.2, size=1000):
np.random.seed(6) # 固定随机数种子
return np.random.normal(mean, std, size)
# 月份
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
# 为每个月生成不同的正态分布数据
data_dict = {}
for i in range(6):
data_dict[months[i]] = generate_normal_data(i * 2) / 10
for i in range(6, 12):
data_dict[months[i]] = generate_normal_data((11 - i) * 2) / 10
mountain_plot(data_dict)