计算机视觉——Python图像边缘检测:边缘检算法原理及实现过程

news2024/11/10 11:13:00

图像边缘检测是计算机视觉中的一项基础且关键技术,它用于识别图像中物体的轮廓和边界。边缘检测算法能够帮助我们从图像中提取重要信息,为后续的图像分析和处理提供依据。

边缘检测算法概述

边缘检测算法的目的是找出图像中亮度变化显著的像素点,这些点通常标志着物体边缘的存在。在Python中,我们可以使用OpenCV库来实现边缘检测,其中最常用的算法包括Sobel、Prewitt和Canny。

Sobel算法

Sobel算法通过计算图像的梯度来检测边缘。它使用两个3x3的卷积核分别对图像进行水平和垂直方向的滤波,然后计算这两个方向梯度的幅度,从而得到边缘强度。

Python代码实现:

import cv2
import numpy as np
import matplotlib.pyplot as plt

# 读取图像
img = cv2.imread("lenna.jpg", cv2.IMREAD_GRAYSCALE)
# Sobel滤波
sobel_x = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3)
sobel_y = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3)
# 计算梯度幅值
gradient_magnitude = np.sqrt(sobel_x**2 + sobel_y**2)
# 显示图像
plt.subplot(2, 2, 1), plt.imshow(img, cmap='gray'), plt.title('Original Image')
plt.subplot(2, 2, 2), plt.imshow(sobel_x, cmap='gray'), plt.title('Sobel X')
plt.subplot(2, 2, 3), plt.imshow(sobel_y, cmap='gray'), plt.title('Sobel Y')
plt.subplot(2, 2, 4), plt.imshow(gradient_magnitude, cmap='gray'), plt.title('Gradient Magnitude')
plt.show()

Canny算法

Canny算法是一种多阶段算法,它包括噪声去除、计算梯度、非极大值抑制和双阈值边缘跟踪等步骤。Canny算法被认为是最好的边缘检测算法之一,因为它能够在保留边缘信息的同时,有效抑制噪声。

Python代码实现:

import cv2
import matplotlib.pyplot as plt

# 读取图像
image = cv2.imread('image.jpg', 0)
# 高斯滤波
blurred = cv2.GaussianBlur(image, (5, 5), 0)
# Canny边缘检测
edges = cv2.Canny(blurred, 50, 150)
# 显示图像
plt.subplot(1, 2, 1), plt.imshow(image, cmap='gray'), plt.title('Original Image')
plt.subplot(1, 2, 2), plt.imshow(edges, cmap='gray'), plt.title('Canny Edges')
plt.show()

结论

边缘检测是图像处理中的一项基本技术,它在许多应用中都发挥着重要作用。通过使用Python和OpenCV,我们可以轻松实现Sobel和Canny等边缘检测算法,从而对图像进行有效的边缘提取。这些技术在计算机视觉领域中的应用包括但不限于图像分割、目标识别和3D重建等。随着技术的发展,边缘检测算法将继续优化,以适应更复杂的图像处理需求。

✅作者简介:热爱科研的人工智能开发者,修心和技术同步精进

❤欢迎关注我的知乎:对error视而不见

代码获取、问题探讨及文章转载可私信。

☁ 愿你的生命中有够多的云翳,来造就一个美丽的黄昏。

🍎获取更多人工智能资料可点击链接进群领取,谢谢支持!👇

点击领取更多详细资料

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2148231.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

pytorch学习笔记一:作用、安装和基本使用方法、自动求导机制、自制线性回归模型、常见tensor格式、hub模块介绍

文章目录 一、安装二、基本使用方法①创建一个矩阵②获得随机值③初始化全零矩阵④直接传入数据⑤构建矩阵,然后随机元素值⑥展示矩阵大小⑦矩阵计算8、取索引9、view操作:改变矩阵维度10、与numpy的协同操作 三、自动求导机制1)定义tensor成…

【error】The minimum required version for Powerlevel10k is 5.1

文章目录 一、背景二、原因三、解决1、安装 ZSH 最新版本2、效果3、下载了还是显示 ZSH 版本为 5.0.2 怎么办 一、背景 安装 ZSH 主题 Powerlevel10k 时报错: You are using ZSH version 5.0.2. The minimum required version for Powerlevel10k is 5.1. Type ‘ec…

ppt一键生成免费版软件有哪些?如何高效生成论文答辩?

答辩经验丰富的人都知道,制作论文答辩ppt是一项既繁琐又耗时的工作。 我们需要从数万字的论文中提炼关键点,梳理内容的逻辑关系,然后进行细致的排版和美化,最后还要进行反复的检查和试讲。整个过程不仅耗费时间,而且需…

MVP 最简可行产品

MVP(最小可行产品)是一种产品开发策略,其主要目的是用最少的时间和资源,开发一个包含最基本必要功能的产品。这样做的目的是能够以最小的成本进入市场,获取用户反馈,再根据反馈逐步优化产品。 MVP是什么 …

1网络安全的基本概念

文章目录 网络安全的基本概念可以总结为以下几个方面: 网络安全的需求: 信息安全的重要性:信息安全是计算机、通信、物理、数学等领域的交叉学科,对于社会的发展至关重要。信息安全的目标:主要包括保密性、完整性、可用…

C/S架构与B/S架构的适用场景分析

C/S架构(客户端/服务器架构)与B/S架构(浏览器/服务器架构)在适用场景上各有特点,主要取决于应用的具体需求、用户群体、系统维护成本、跨平台需求等因素。 一、C/S架构的适用场景 1、高性能与交互性要求高的应用&…

闯关leetcode——58. Length of Last Word

大纲 题目地址内容 解题代码地址 题目 地址 https://leetcode.com/problems/length-of-last-word/description/ 内容 Given a string s consisting of words and spaces, return the length of the last word in the string. A word is a maximal substring consisting of…

docker从容器提取镜像并上传至dockerhub

一、使用commit从容器中提取镜像 例如 //docker commit 容器名 想要创建的镜像名:版本号 docker commit epsilon_planner epsilon_planner:latest导出完成后镜像如图所示 二、登陆dockerhub并创建仓库 登陆dockerhub,点击Create repository创建仓库&#xff0c…

小程序体验版无法正常请求接口,开启 调试可以正常请求

在本地开发工具可以正常访问小程序,上传代码后打开体验版,界面无法请求接口,手机小程序打开调试模式可以正常访问。这可以查看下小程序后台是否设置了服务器域名以及业务域名 然后查看小程序开发工具 - 详情 - 项目配置 重新上传代码&#xf…

北斗盒子TD20——水上作业的安全防线,落水报警守护生命

在广阔的水域上,水上作业人员面临着多变的环境和潜在的风险。近年来,随着海洋经济的快速发展,海上作业活动日益频繁,人员安全问题也日益凸显。传统的海上救援手段存在诸多不足,如救援响应时间长、定位不准确等。 水上…

SpringBoot教程(三十) | SpringBoot集成Shiro(权限框架)

SpringBoot教程(三十) | SpringBoot集成Shiro(权限框架) 一、 什么是Shiro二、Shiro 组件核心组件其他组件 三、流程说明shiro的运行流程 四、SpringBoot 集成 Shiro1. 添加 Shiro 相关 maven2. 添加 其他 maven3. 设计数据库表4.…

JSONC:为JSON注入注释的力量

JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,广泛应用于Web开发、配置文件和数据存储等领域。 其简洁的语法和易于解析的特点,使得JSON成为了现代编程中不可或缺的一部分。然而,JSON的一个显著缺点是…

波分技术基础 -- MS-OTN介绍

什么是MS-OTN 由于OTN最小交叉颗粒度为ODU0,承载小颗粒业务时带宽利用率较低;且无法承载分组业务,随着MPLS-TP技术的成熟,MS-OTN时代来临。MS-OTN(Multi-Service Optical Transport Network):核…

【论文解读系列】用于自监督点云表示的生成变分对比学习

Generative Variational-Contrastive Learning for Self-Supervised Point Cloud Representation | IEEE Transactions on Pattern Analysis and Machine Intelligence (acm.org) 作者:Bohua Wang; Zhiqiang Tian; Aixue Ye; Feng Wen; Shaoyi Du; Yue Gao 摘要 三…

VS code 查看 ${workspaceFolder} 目录指代路径

VS code 查看 ${workspaceFolder} 目录指代路径 引言正文 引言 在 VS code 创建与运行 task.json 文件 一文中我们已经介绍了如何创建属于自己的 .json 文件。在 VS code 中,有时候我们需要添加一些文件路径供我们导入自定义包使用,此时,我们…

Github Wiki 超链接 转 码云Gitee Wiki 超链接

Github Wiki 超链接 转 码云Gitee Wiki 超链接 Github 是 :[[相对路径]] Gitee 是 :[链接文字](./相对路径) 查找:\[\[(.*?)\]\] 替换:[$1]\(./$1\) 或替换:**[$1]\(./$1\)** (码云的超链接,很…

实战18-Card封装

import Card from ../../components/Card/Index; import rvp from ../../utils/resposive/rvIndex;Component export default struct DomesticService {build() {Column() {Card() {//默认插槽Text("DomesticService")}}.width(100%).margin({ top: rvp(43) })} } im…

2024 Python3.10 系统入门+进阶(十五):文件及目录操作

目录 一、文件IO操作1.1 创建或打开文件1.2 读取文件1.2.1 按行读取1.2.2 多行读取1.2.3 完整读取 1.3 写入文件1.3.1 写入字符串1.3.2 写入序列 1.4 上下文管理1.4.1 with语句的使用1.4.2 上下文管理器(拓展----可以学了面向对象之后再回来看) 1.5 文件的遍历 二、os.path模块…

大语言模型-教育方向数据集

大语言模型-教育方向数据集 编号论文数据集1Bitew S K, Hadifar A, Sterckx L, et al. Learning to Reuse Distractors to Support Multiple-Choice Question Generation in Education[J]. IEEE Transactions on Learning Technologies, 2022, 17: 375-390.Televic, NL, https…

79页 PPT华为项目管理经典培训教材(高级)

读者朋友大家好,最近有会员朋友咨询晓雯,需要《79页PPT华为项目管理经典培训教材》资料,欢迎大家文末扫码下载学习。 一、华为项目管理理念方法 (一)项目管理基本概念与方法 项目启动 明确项目目标:华为…