【机器学习(八)】分类和回归任务-因子分解机(Factorization Machines,FM)-Sentosa_DSML社区版

news2024/9/19 17:27:40

文章目录

  • 一、算法概念
  • 二、算法原理
    • (一) FM表达式
    • (二)时间复杂度
    • (三)回归和分类
  • 三、算法优缺点
    • (一)优点
    • (二)缺点
  • 四、FM分类任务实现对比
    • (一)数据加载和样本分区
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (二)模型训练
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (三)模型评估和模型可视化
      • 1、Python代码
      • 2、Sentosa_DSML社区版
  • 五、FM回归任务实现对比
    • (一)数据加载和样本分区
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (二)模型训练
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (三)模型评估和模型可视化
      • 1、Python代码
      • 2、Sentosa_DSML社区版
  • 六、总结

一、算法概念

  因子分解机(Factorization Machines, FM)是一种基于矩阵分解的机器学习算法,主要解决高维稀疏数据下的特征交互和参数估计问题。FM 通过引入特征组合和隐向量的矩阵分解来提升模型表现,特别适合处理推荐系统等场景中的数据稀疏性和特征交互复杂性。

  FM 可以用于分类和回归任务,是线性模型的扩展,能够高效地捕捉特征之间的交互作用。FM 的核心是通过低维向量的内积表示特征交互,使得其参数数量随维度线性增长,从而降低计算复杂度。
在这里插入图片描述
  FM 的主要特点:
   ∙ \bullet 有监督学习模型,适用于回归和分类任务。
   ∙ \bullet 通过低维向量的内积表示特征交互,模型结构保持线性。
   ∙ \bullet 常用训练方法:随机梯度下降(SGD)、交替最小二乘法(ALS)和马尔可夫链蒙特卡洛(MCMC)。
  FM 模型通过矩阵分解对特征交互建模,并且在处理稀疏数据时有显著优势,常用于推荐系统。

二、算法原理

(一) FM表达式

  为了使系统能够进行预测,它依赖于由用户事件记录生成的可用数据。这些数据是表示兴趣和意图的交易记录,例如:下载、购买、评分。
  对于一个电影评论系统来说,交易数据记录了用户 u ∈ U u \in U uU 在某一时间 t ∈ R t \in R tR 对电影(物品) i ∈ I i \in I iI 给出的评分 r ∈ { 1 , 2 , 3 , 4 , 5 } r \in\{1, 2, 3, 4, 5 \} r{1,2,3,4,5} ,由此产生的数据集可以表示如下:
在这里插入图片描述
  用于预测的数据表示为一个矩阵 X ∈ R m × n X \in\mathbb{R}^{m \times n} XRm×n ,其中包含总共 m m m 个观测值,每个观测值由一个实值特征向量 x ∈ R n x \in\mathbb{R}^{n} xRn 组成。来自上述数据集的特征向量可以表示为:
在这里插入图片描述
  其中, n = ∣ U ∣ + ∣ I ∣ + ∣ T ∣ n=| U |+| I |+| T | n=U+I+T ,即 x ∈ R n x \in\mathbb{R}^{n} xRn 也可以表示为 x ∈ R ∣ U ∣ + ∣ I ∣ + ∣ T ∣ x \in\mathbb{R}^{| U |+| I |+| T |} xRU+I+T ,其中训练数据集的表达式为 D = { ( x ( 1 ) , y ( 1 ) ) , ( x ( 2 ) , y ( 2 ) ) , … , ( x ( m ) , y ( m ) ) } D=\{( x^{( 1 )}, y^{( 1 )} ), ( x^{( 2 )}, y^{( 2 )} ), \ldots, ( x^{( m )}, y^{( m )} ) \} D={(x(1),y(1)),(x(2),y(2)),,(x(m),y(m))} 。训练目标是估计一个函数 y ^ ( x ) : R n → R \hat{y} ( x ) : \mathbb{R}^{n} \to\mathbb{R} y^(x):RnR ,当提供第 i i i x i ∈ R n x_{i} \in\mathbb{R}^{n} xiRn 作为输入时,能够正确预测对应的目标值 y i ∈ R y_{i} \in\mathbb{R} yiR
  FM模型的计算表达式如下所示:
在这里插入图片描述
   < v i , v j > < {\mathbf{v}}_{i}, {\mathbf{v}}_{j} > <vi,vj> 是交叉特征的参数,可以由一组参数定义:
< v i , v j > = w ^ i , j = ∑ f = 1 k v i , f × v j , f < {\mathbf{v}}_{i}, {\mathbf{v}}_{j} >=\hat{w}_{i, j}=\sum_{f=1}^{k} v_{i, f} \times v_{j, f} <vi,vj>=w^i,j=f=1kvi,f×vj,f
  当 k k k 足够大时,对于任意对称正定的实矩阵 W ^ ∈ R n × n \widehat{W} \in\mathbb{R}^{n \times n} W Rn×n ,均存在实矩阵 V   ∈   R n × k V \, \in\, \mathbb{R}^{n \times k} VRn×k ,使得 W ^ = V V ⊤ \widehat{W}=V V^{\top} W =VV成立:
W ^ = [ w ^ 1 , 1 w ^ 1 , 2 ⋯ w ^ 1 , n w ^ 2 , 1 w ^ 2 , 2 ⋯ w ^ 2 , n ⋮ ⋮ ⋱ ⋮ w ^ n , 1 w ^ n , 2 ⋯ w ^ n , n ] = V T V = [ v 1 T v 2 T ⋮ v n T ] [ v 1 v 2 ⋯ v n ] \hat{\mathbf{W}} = \begin{bmatrix} \hat{w}_{1,1} & \hat{w}_{1,2} & \cdots & \hat{w}_{1,n} \\ \hat{w}_{2,1} & \hat{w}_{2,2} & \cdots & \hat{w}_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{w}_{n,1} & \hat{w}_{n,2} & \cdots & \hat{w}_{n,n} \end{bmatrix} = \mathbf{V}^{T} \mathbf{V} = \begin{bmatrix} {\mathbf{v}}_1^{T} \\ {\mathbf{v}}_2^{T} \\ \vdots \\ {\mathbf{v}}_n^{T} \end{bmatrix} \begin{bmatrix} {\mathbf{v}}_1 &{\mathbf{v}}_2 & \cdots & {\mathbf{v}}_n \end{bmatrix} W^= w^1,1w^2,1w^n,1w^1,2w^2,2w^n,2w^1,nw^2,nw^n,n =VTV= v1Tv2TvnT [v1v2vn]
  其中,模型待求解的参数为:
w 0 ∈ R , w ∈ R n , V ∈ R n × k w_{0} \in\mathbb{R}, \quad\mathbf{w} \in\mathbb{R}^{n}, \quad\mathbf{V} \in\mathbb{R}^{n \times k} w0R,wRn,VRn×k
  其中:
   ∙ \bullet w 0 w_{0} w0 表示全局偏差。
   ∙ \bullet w i w_{i} wi 用于捕捉第 i i i 个特征和目标之间的关系。
   ∙ \bullet w ^ i , j \hat{w}_{i, j} w^i,j 用于捕捉 ( i , j ) ( i, j ) (i,j) 二路交叉特征和目标之间的关系。
   ∙ \bullet v i {\mathbf{v}}_{i} vi 代表特征 i i i 的表示向量,它是 V \mathbf{V} V 的第 i i i 列。

(二)时间复杂度

  根据FM模型计算表达式,可以得到模型的计算复杂度如下:
{ n + ( n − 1 ) } + { n ( n − 1 ) 2 [ k + ( k − 1 ) + 2 ] + n ( n − 1 ) 2 − 1 } + 2 = O ( k n 2 ) , \{n+( n-1 ) \}+\left\{\frac{n ( n-1 )} {2} [ k+( k-1 )+2 ]+\frac{n ( n-1 )} {2}-1 \right\}+2={ O} ( k n^{2} ), {n+(n1)}+{2n(n1)[k+(k1)+2]+2n(n1)1}+2=O(kn2),
  通过对交叉项的分解和计算,可以降低时间复杂度为 O ( k n ) { O} ( k n ) O(kn),计算过程如下所示:
在这里插入图片描述
  对于交叉特征,它们的交叉矩阵是一个对称矩阵,这里通过对一个 3x3 对称矩阵的详细分析,展示如何通过减少自交互项和利用对称性来优化计算。最终的结果是简化方程,并且将计算复杂度从二次方降低为线性级别,使模型能够更加高效地处理稀疏数据场景。
  首先,使用一个 3x3 的对称矩阵,图中表达式为计算目标:在这里插入图片描述
  对目标表达式进行展开,展开后对内积进行计算,左式表示 3x3 对称矩阵的一半(对称矩阵的上三角部分)
在这里插入图片描述
  右式表示需要从左式中减去的部分,右式为对称矩阵中自交互的部分,即对角线部分的计算。
在这里插入图片描述
  最终推导,得到:
y ^ ( x ) = w 0 + ∑ i = 1 n w i × x i + 1 2 ∑ f = 1 k ( ( ∑ i = 1 n v i , f × x i ) 2 − ∑ i = 1 n v i , f 2 × x i 2 ) \hat{y} ( {\bf x} )=w_{0}+\sum_{i=1}^{n} w_{i} \times x_{i}+\frac{1} {2} \sum_{f=1}^{k} \left( \left( \sum_{i=1}^{n} v_{i, f} \times x_{i} \right)^{2}-\sum_{i=1}^{n} v_{i, f}^{2} \times x_{i}^{2} \right) y^(x)=w0+i=1nwi×xi+21f=1k (i=1nvi,f×xi)2i=1nvi,f2×xi2
  其计算复杂度为 O ( k n ) { O} ( k n ) O(kn) k { [ n + ( n − 1 ) + 1 ] + [ 3 n + ( n − 1 ) ] + 1 } + ( k − 1 ) + 1 = O ( k n ) k \{[ n+( n-1 )+1 ]+[ 3 n+( n-1 ) ]+1 \}+( k-1 )+1={\cal O} ( k n ) k{[n+(n1)+1]+[3n+(n1)]+1}+(k1)+1=O(kn)

(三)回归和分类

  FM 模型可以用于求解分类问题,也可以用于求解回归问题。在回归任务中,FM 的输出 y ^ ( x ) \hat{y} ( {\bf x} ) y^(x)可以直接作为连续型预测变量。目标是优化回归损失函数,
  最小二乘误差(MSE):最小化预测值与实际值之间的均方误差。损失函数表达式如下所示:
l ( y ^ ( x ) , y ) = ( y ^ ( x ) − y ) 2 l(\hat{y}(x), y) = (\hat{y}(x) - y)^2 l(y^(x),y)=(y^(x)y)2
  对于二分类问题,使用的是Logit或Hinge损失函数:
l ( y ^ ( x ) , y ) = − ln ⁡ σ ( y ^ ( x ) y ) l(\hat{y}(x), y) = -\ln \sigma(\hat{y}(x) y) l(y^(x),y)=lnσ(y^(x)y)
  其中,σ 是Sigmoid(逻辑函数),𝑦∈{−1,1}。在二分类任务中,模型输出的是类别的概率,Sigmoid函数将其转换为0到1之间的概率值,而损失函数则度量预测值与真实分类之间的偏差。FMs 容易出现过拟合问题,因此应用 L2 正则化来防止过拟合。正则化有助于减少模型的复杂性,防止模型在训练数据上过度拟合,从而提升模型在新数据上的泛化能力。
  模型训练好后,就可以利用 y ^ ( x ) \widehat{y} ( \mathbf{x} ) y (x) 的正负符号来预测 x \mathbf{x} x 的分类了。

  最后,FM 模型方程的梯度可以表示如下:
∂ ∂ θ y ^ ( x ) = { 1 , 如果   θ   是   w 0 x i , 如果   θ   是   w i x i ∑ j = 1 n v j f x j − v i f x i 2 , 如果   θ   是   v i , f \frac{\partial}{\partial \theta} \hat{y}(x) = \begin{cases} 1, & \text{如果} \, \theta \, \text{是} \, w_0 \\ x_i, & \text{如果} \, \theta \, \text{是} \, w_i \\ x_i \sum_{j=1}^{n} v_j^f x_j - v_i^f x_i^2, & \text{如果} \, \theta \, \text{是} \, v_{i,f} \end{cases} θy^(x)= 1,xi,xij=1nvjfxjvifxi2,如果θw0如果θwi如果θvi,f
  其中,
   ∙ \bullet 当参数是 w 0 w_{0} w0 时,梯度为常数1。
   ∙ \bullet 当参数是 w i w_{i} wi 时,梯度为 x i x_{i} xi ,即特征 i i i 的值。
   ∙ \bullet 当参数是 v i , f v_{i, f} vi,f 时,梯度更复杂,包含一个交互项 x i ∑ j = 1 n v j f x j x_{i} \sum_{j=1}^{n} v_{j}^{f} x_{j} xij=1nvjfxj 减去一个二次项 v i f x i 2 v_{i}^{f} x_{i}^{2} vifxi2 。这里
v j f v_{j}^{f} vjf 是对应特征 j j j 的因子向量的第 f f f 个元素。
  求和项 ∑ j = 1 n v j f x j \sum_{j=1}^{n} v_{j}^{f} x_{j} j=1nvjfxj i i i 无关,因此可以提前计算。这样,每个梯度都可以在常数时间 O ( 1 ) O ( 1 ) O(1) 内计算出来,而所有参数的更新可以在 O ( k n ) O(kn) O(kn) 或稀疏条件下的 O ( k N z ( x ) ) O(kN_z(x)) O(kNz(x))内完成,其中 k k k是因子维度, n n n是特征数量, N z ( x ) N_z(x) Nz(x)是非零特征的数量。

三、算法优缺点

(一)优点

  1、解决了特征稀疏的问题,能够在非常系数数据的情况下进行预估
  2、解决了特征组合的问题
  3、FM是一个通用模型,适用于大部分场景
  4、线性复杂度,训练速度快

(二)缺点

  虽然考虑了特征的交互,但是表达能力仍然有限,不及深度模型;通过矩阵结构来建模特征之间的二阶交互交互作用,假设所有特征的权重都可以通过隐式支持来串联,但实际上某些特征交互可能比其他特征交互更重要,这种统一的串联有时无法捕捉复杂的交互关系。

四、FM分类任务实现对比

  使用 PySpark 的 FMClassifier 进行分类任务

(一)数据加载和样本分区

1、Python代码

# 创建 Spark 会话
spark = SparkSession.builder \
    .appName("FMClassifierExample") \
    .getOrCreate()

# 加载 Iris 数据集
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
y = iris.target

# 将数据转换为 DataFrame
df = pd.DataFrame(X, columns=iris.feature_names)
df['label'] = y

# 将 pandas DataFrame 转换为 Spark DataFrame
spark_df = spark.createDataFrame(df)

# 将特征列组合成一个单独的特征列
assembler = VectorAssembler(inputCols=iris.feature_names, outputCol="features")
spark_df = assembler.transform(spark_df).select(col("label"), col("features"))

# 划分训练集和测试集
train_df, test_df = spark_df.randomSplit([0.8, 0.2], seed=42)

2、Sentosa_DSML社区版

  首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等),
在这里插入图片描述
  然后,连接行处理中的样本分区算子对数据进行训练集和测试集的划分,比例为8:2,
在这里插入图片描述
  再接类型算子,设置Feature列和Label列。
在这里插入图片描述

(二)模型训练

1、Python代码

from pyspark.sql import SparkSession
from pyspark.ml.classification import FMClassifier

# 创建 FMClassifier 模型
fm = FMClassifier(
    featuresCol="features",
    labelCol="label",
    predictionCol="prediction",
    probabilityCol="probability",
    rawPredictionCol="rawPrediction",
    factorSize=8,
    fitIntercept=True,
    fitLinear=True,
    regParam=0.01,
    miniBatchFraction=1.0,
    initStd=0.01,
    maxIter=100,
    stepSize=0.01,
    tol=1e-06,
    solver="adamW",
    thresholds=[0.5],  # 设置分类阈值
    seed=42
)

# 训练模型
fm_model = fm.fit(train_df)

# 进行预测
predictions = fm_model.transform(test_df)

# 显示预测结果
predictions.select("features", "label", "prediction", "probability").show()

2、Sentosa_DSML社区版

  连接因子分解机分类算子,右侧设置模型参数等信息,点击应用后,右击算子并执行,得到因子分解机分类模型。如下图所示,
在这里插入图片描述
在这里插入图片描述

(三)模型评估和模型可视化

1、Python代码

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns

# 从 PySpark DataFrame 提取预测结果
predictions_df = predictions.select("label", "prediction").toPandas()
y_test_sklearn = predictions_df['label'].values
y_pred_sklearn = predictions_df['prediction'].values

# 评估模型
accuracy = accuracy_score(y_test_sklearn, y_pred_sklearn)
precision = precision_score(y_test_sklearn, y_pred_sklearn, average='weighted')
recall = recall_score(y_test_sklearn, y_pred_sklearn, average='weighted')
f1 = f1_score(y_test_sklearn, y_pred_sklearn, average='weighted')

# 打印评估结果
print(f"FM 模型的准确率: {accuracy:.2f}")
print(f"加权精度 (Weighted Precision): {precision:.2f}")
print(f"加权召回率 (Weighted Recall): {recall:.2f}")
print(f"F1 值 (Weighted F1 Score): {f1:.2f}")

# 计算混淆矩阵
cm = confusion_matrix(y_test_sklearn, y_pred_sklearn)

2、Sentosa_DSML社区版

  模型后可接任意个数据处理算子,比如图表分析算子或数据写出算子,形成算子流执行,也可接评估算子,对模型的分类结果进行评估。如下图所示:在这里插入图片描述
  得到训练集和测试集的评估结果如下:
在这里插入图片描述
在这里插入图片描述
  右击模型,可以查看模型的模型信息,模型信息如下图所示:
在这里插入图片描述在这里插入图片描述

在这里插入图片描述

五、FM回归任务实现对比

  利用python代码,结合 PySpark 和 pandas 处理数据,主要应用了 Spark 的 FMRegressor 进行回归分析。

(一)数据加载和样本分区

1、Python代码

# 读取 winequality 数据集
df = pd.read_csv("D:/sentosa_ML/Sentosa_DSML/mlServer/TestData/winequality.csv")
df = df.dropna()  # 处理缺失值

# 将 pandas DataFrame 转换为 Spark DataFrame
spark_df = spark.createDataFrame(df)

# 将特征列组合成一个单独的特征列
feature_columns = df.columns.tolist()
feature_columns.remove('quality')
assembler = VectorAssembler(inputCols=feature_columns, outputCol="features")
spark_df = assembler.transform(spark_df).select("features", "quality")

# 划分训练集和测试集
train_df, test_df = spark_df.randomSplit([0.8, 0.2], seed=42)

2、Sentosa_DSML社区版

  先读取需要数据集,
在这里插入图片描述
  然后连接样本分区算子对数据集进行训练集和测试集的划分,划分比例为8:2,
在这里插入图片描述
  再接类型算子设置Feature列和Label列(Label列需满足:能转换为Double类型或者就是Double类型)
在这里插入图片描述

(二)模型训练

1、Python代码

# 创建 FMRegressor 模型
fm_regressor = FMRegressor(
    featuresCol="features",
    labelCol="quality",
    predictionCol="prediction",
    factorSize=8,
    fitIntercept=True,
    fitLinear=True,
    regParam=0.01,
    miniBatchFraction=1.0,
    initStd=0.01,
    maxIter=100,
    stepSize=0.01,
    tol=1e-06,
    solver="adamW",
    seed=42
)

# 训练模型
fm_model = fm_regressor.fit(train_df)

# 对测试集进行预测
predictions = fm_model.transform(test_df)

2、Sentosa_DSML社区版

  连接因子分解机回归算子,
在这里插入图片描述
  右击算子,点击运行,得到因子分解机回归模型。如下图所示:
在这里插入图片描述

(三)模型评估和模型可视化

1、Python代码

# 评估模型
evaluator = RegressionEvaluator(
    predictionCol="prediction",
    labelCol="quality",
    metricName="r2"
)
r2 = evaluator.evaluate(predictions)
evaluator_mae = RegressionEvaluator(predictionCol="prediction", labelCol="quality", metricName="mae")
mae = evaluator_mae.evaluate(predictions)
evaluator_mse = RegressionEvaluator(predictionCol="prediction", labelCol="quality", metricName="mse")
mse = evaluator_mse.evaluate(predictions)
rmse = np.sqrt(mse)

# 打印评估结果
print(f"R²: {r2:.4f}")
print(f"MAE: {mae:.4f}")
print(f"MSE: {mse:.4f}")
print(f"RMSE: {rmse:.4f}")

# 将预测值转换为 Pandas DataFrame 以便绘图
predictions_pd = predictions.select("quality", "prediction").toPandas()
y_test = predictions_pd["quality"]
y_pred = predictions_pd["prediction"]

# 绘制实际值与预测值的对比图
plt.figure(figsize=(8, 6))
plt.scatter(y_test, y_pred, color="blue", alpha=0.6)
plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 'r--')
plt.xlabel('Actual Quality')
plt.ylabel('Predicted Quality')
plt.title('Actual vs Predicted Wine Quality')
plt.show()

# 计算残差
residuals = y_test - y_pred

# 使用 Seaborn 绘制带核密度估计的残差直方图
plt.figure(figsize=(8, 6))
sns.histplot(residuals, kde=True, bins=20)
plt.title('Residuals Histogram with KDE')
plt.xlabel('Residuals')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()

2、Sentosa_DSML社区版

  模型后接评估算子,对模型结果进行评估。算子流如下图所示:
在这里插入图片描述
  训练集和测试集的评估结果如下:
在这里插入图片描述
在这里插入图片描述
  右击模型,查看模型的模型信息:
在这里插入图片描述
在这里插入图片描述

六、总结

  相比传统代码方式,利用Sentosa_DSML社区版完成机器学习算法的流程更加高效和自动化,传统方式需要手动编写大量代码来处理数据清洗、特征工程、模型训练与评估,而在Sentosa_DSML社区版中,这些步骤可以通过可视化界面、预构建模块和自动化流程来简化,有效的降低了技术门槛,非专业开发者也能通过拖拽和配置的方式开发应用,减少了对专业开发人员的依赖。
  Sentosa_DSML社区版提供了易于配置的算子流,减少了编写和调试代码的时间,并提升了模型开发和部署的效率,由于应用的结构更清晰,维护和更新变得更加容易,且平台通常会提供版本控制和更新功能,使得应用的持续改进更为便捷。

  为了非商业用途的科研学者、研究人员及开发者提供学习、交流及实践机器学习技术,推出了一款轻量化且完全免费的Sentosa_DSML社区版。以轻量化一键安装、平台免费使用、视频教学和社区论坛服务为主要特点,能够与其他数据科学家和机器学习爱好者交流心得,分享经验和解决问题。文章最后附上官网链接,感兴趣工具的可以直接下载使用

https://sentosa.znv.com/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2146673.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【2024华为杯研究生数学建模竞赛】比赛思路、代码、论文更新中.....

目录 赛中助攻华为杯常用建模算法&#x1f5d2;️&#x1f5d2;️历年优秀论文⭐⭐论文模板1&#xff09;论文模板2&#xff09;基础画图能力 绘图与数据分析软件SPSSPRO 2024研究生数学建模竞赛时间为9月21日&#xff08;周六&#xff09;8:00至9月25日&#xff08;周三&#…

互联网前端之 CSS 常见属性与三层结构

目录 现在互联网前端三层 CSS 常见属性 关注作者微信公众号&#xff0c;开启探索更多 CSS 知识的精彩之旅。在这里&#xff0c;你将收获丰富的CSS专业内容&#xff0c;深入了解这一网页开发语言的奥秘&#xff0c;不断拓展你的知识边界&#xff0c;提升技能水平。快来关注吧&…

对想学习人工智能或者大模型技术从业者的建议,零基础入门到精通,收藏这一篇就够了

“ 技术的价值在于应用&#xff0c;理论与实践相结合才能事半功倍**”** 写这个关于AI技术的公众号也有差不多五个月的时间了&#xff0c;最近一段时间基本上都在保持日更状态&#xff0c;而且写的大部分都是关于大模型技术理论和技术方面的东西。‍‍‍‍‍‍‍‍‍ 然后最近…

Windows安全日志分析(事件ID详解)

目录 如何查看Windows安全日志 常见事件ID列表 事件ID 1116 - 防病毒软件检测到恶意软件 事件ID 4624 - 账户登录成功 事件ID 4625 - 账户登录失败 事件ID 4672 - 为新登录分配特殊权限 事件ID 4688 - 新进程创建 事件ID 4689 - 进程终止 事件ID 4720 - 用户账户创建 …

3款免费的GPT类工具

前言 随着科技的飞速发展&#xff0c;人工智能&#xff08;AI&#xff09;的崛起与发展已经成为我们生活中不可或缺的一部分。它的出现彻底改变了我们与世界互动的方式&#xff0c;并为各行各业带来了前所未有的便利。 一、Kimi 网址&#xff1a;点我前往 国产AI模型Kimi是一…

C++第八节课 日期类的补充

在上节课我们提交的代码中&#xff0c;还有着一些不足&#xff1a; 如果我们想要运行下面的函数&#xff1a; void test4() {Date d1(2023, 5, 5);d1 -50;d1.Print();Date d2(2023, 5, 5);d2 - -50;d2.Print(); } 我们发现之前的代码没有考虑day为负数的情况&#xff0c;可以…

浅谈红外测温技术在变电站运维中的应用

0引言 随着市场经济的繁荣发展&#xff0c;社会对电力的需求持续增长。城市供电网络的规模和用电设备的总量也在不断扩大&#xff0c;这导致城市电力系统中潜在的网络安全隐患日益增多。作为电力系统核心组成部分的变压器&#xff0c;其安全、稳定的工作直接关系到电能的质量和…

俄罗斯的Alexey V. Gubin开发的数据恢复文件-零假设恢复只读模式下对扫描/恢复数据起作用-供大家学习研究参考

// 主要特征 // Windows FAT,NTFS,Linux ext2 / 3/4和XFS卷格式化的驱动器或“ RAW文件系统”外部驱动器,USB拇指驱动器和存储卡带有ZAR Data Recovery免费版本的数码照片恢复RAID数据恢复NAS数据恢复MBR损坏数据恢复具有多个逻辑驱动器的分区表恢复支持长文件名和国家文件名…

图神经网络模型应用(8)--2

1.自然语言处理相关的应用 文本分类是自然语言处理中的一个经典应用&#xff0c;图神经网络常用的标准数据集里就包含引用网络中论文的分类&#xff0c;但是作为机器学习领域的通用模型测试数据集&#xff0c;它们并没有充分利用文本本身的结构(每个文档只是用词袋特征来表示),…

【微处理器系统原理和应用设计第十五讲】模拟/数字转换器

一、基础概念 1、概念 ADC将真实世界的例如温度、压力、声音或者图像等的模拟信号转换为更容易储存、处理和发射的数字形式。 2、分类 间接ADC&#xff1a;先将输入模拟电压转化为时间/频率等数字信号&#xff0c;例如双积分型ADC 直接ADC&#xff1a;直接转化为数字量&am…

Pandas的读写数据

目录 读写文件的类型 Excel写 API 准备数据 1.直接写入(默认有索引和标题) 2.写入(去掉索引) 3.写入(去掉索引和标题) 4.写入(去掉索引和标题,指定表单信息) Excel读 API 1.读(默认带有索引和标题) 2.读(指定索引项) 3.读(碰到无标题列和无索引列,指定索引列,标题列…

C++速通LeetCode中等第7题-和为K的子数组(巧用前缀和)

巧用哈希表与前缀和&#xff0c;前缀和差为k的两个序号之间的数组就是满足条件的子数组&#xff0c;用哈希表来存放每个序号的前缀和。 前缀和就是头元素到当前序号子数组元素的和 class Solution { public:int subarraySum(vector<int>& nums, int k) {unordered_…

【软件测试】测试的岗位有哪些?

求职入口有很多&#xff1a;相关企业官网、求职软件、校招、公众号等等。 下面就在某招聘网站上看看测试有哪些岗位吧&#xff01; 测试只是一个统称&#xff0c;在测试下面还有很多细分岗位。 但是测试的岗位主要分为以下俩个方面&#xff1a; 软件测试开发工程师&#xff…

Linux(Centos7)系统下给已有分区进行扩容

本文详细介绍了&#xff0c;如何给Centos中已有分区进行扩容&#xff0c;简单的几条命令即可完成。 文章目录 1. 创建物理卷 (PV)2. 将新的物理卷添加到卷组 (VG)3. 扩展逻辑卷 (LV)4. 扩展文件系统4.1 查看文件系统类型4.2 扩展文件系统 完成 1、首先把vmware中的linux关机&am…

【Python】从基础到进阶(九):探索Python中的迭代器与生成器

&#x1f525; 个人主页&#xff1a;空白诗 文章目录 一、引言二、迭代器1. 什么是迭代器&#xff1f;迭代器的工作流程&#xff1a; 2. 使用内置迭代器3. 自定义迭代器 三、生成器1. 什么是生成器&#xff1f;2. 创建生成器3. 生成器表达式 四、生成器与迭代器的区别五、生成器…

Python基础(六)——PyEcharts数据可视化初级版

案例 【前言&#xff1a;为了巩固之前的Python基础知识&#xff08;一&#xff09;到&#xff08;五&#xff09;&#xff0c;并为后续使用Python作为数据处理的好帮手&#xff0c;我们一起来看几个例子】 使用工具&#xff1a;Echarts Echarts 是一个由百度开源的数据可视化…

Node js介绍

目录 概要**对Node的认识****Node的概念理解****Node和浏览器区别****Node的架构图** **Node的应用场景****Node的安装****安装Node的LTS版本****Node的版本管理工具nvm(了解)** **Node的输入和输出**Node程序传递参数Node的输出 **Node的全局对象****特殊的全局对象****其他的…

C++类与对象深度解析(五):友元机制、内部类与匿名对象的高级应用

文章目录 C类和对象——全面指南前言4. 友元详解4.1 友元的基本概念 4.2 友元函数示例代码&#xff1a;友元函数访问两个类的私有成员输出&#xff1a; 4.3 友元类示例代码&#xff1a;友元类的使用输出&#xff1a; 4.4 友元的特性与限制4.5 友元函数与类的实际应用示例&#…

WAAP解决方案:守护数字时代的安全盾牌

在当今这个数字化、数据驱动的时代&#xff0c;网络安全已成为企业运营中不可或缺的一环。随着Web应用程序和API接口在业务中的广泛应用&#xff0c;其面临的安全威胁也日益复杂多变。为此&#xff0c;WAAP&#xff08;Web Application and API Protection&#xff09;解决方案…

JavaEE:网络编程(UDP)

文章目录 UDPUDP的特点UDP协议端格式校验和前置知识校验和具体是如何工作的? UDP UDP的特点 UDP传输的过程类似于寄信. 无连接: 知道对端的IP和端口号就直接进行传输,不需要建立连接.不可靠: 没有确认机制,没有重传机制,如果因为网络故障导致该段无法到达对方,UDP协议也不会…