“ 技术的价值在于应用,理论与实践相结合才能事半功倍**”**
写这个关于AI技术的公众号也有差不多五个月的时间了,最近一段时间基本上都在保持日更状态,而且写的大部分都是关于大模型技术理论和技术方面的东西。
然后最近一段时间就发现了一个问题,写的越理论的东西看的人越多,越实际越细节的东西看的人越少,不知道是因为系统推送的原因,还是观看者的原因。
因此,根据这个现象就想提几个学习的建议,让大家少走一点弯路。
01
—
人工智能技术学习建议
这个关于学习人工智能技术的建议,也可以说是一个学习技术的方法论。
首先大家要明白一点——(任何)技术都是一个更偏向于实践的东西,具体来说就是学习技术实践要大于理论,要以实践为主理论为辅,而不是反其道而行之,但是在实际的经历和观察中,我发现很多人却是以理论为主,实践为辅。
_知行合一,在知中行,在行中知_
就拿这个公众号来说,越理论的东西看的人越多,真的涉及到实操的部分看的人反而变少了。
比如说,很多人对什么是人工智能,什么是神经网络,什么是大模型,什么是多模态大模型等等很感兴趣;但对大模型实际过程中的训练数据的收集与清洗,损失差和反向传播等核心操作却视若无睹。
但是这些理论的东西,每个理解过人工智能技术的人都能说上几句;但真的让他来实际操作从大模型的选型,模型的训练和部署来打造一个能用的大模型,这时他就开始傻眼了。
理论需不需要懂?
需要,但并不是特别需要;很多理论只是看别人的书和文章你是不会真正明白的,只有实际动手操作时才能真正理解理论。
就类似于java面试八股文,随便一个面试者都可以说上几句;但一旦涉及到具体的业务场景或技术场景,这时很多人就傻眼了,而这也是不同面试者之间的差距。
理论并不等于技术,技术也不等于理论,技术更多时候是理论和实践的结合;在实践中检验理论,在理论中指导实践,最后理论和实践互相验证,互相修正。
所以说,学习大模型技术最重要的是上手实践一下,不一定非要像openAI,谷歌,meta一样搞那么大的模型,哪怕只是设计一个两三层的神经网络模型,然后自己完成模型的设计,训练和部署也比一直看理论更有用。
或者是找一些开源的大模型项目,看看它们解决了哪些问题;是怎么做的,又为什么这么做,是否有其它解决方案;而且一些小模型个人电脑就可以跑的起来,或者找一些免费的GPU资源,比如谷歌的Colab平台。
这样你才能知道不同模型之间的差别是什么,怎么使用模型解决不同领域的问题等。
_学习大模型的三个方向_
很多人学习人工智能技术就一心扑在技术上,认为自己把技术学好了就一定能找到工作,一定能成为公司技术部核心成员;但大家要明白的一个事实是,技术是为业务服务的,技术的作用是解决业务问题,而不是搞学术研究。
学习大模型技术,个人认为有三个方向:
大模型基础技术大牛
说白了就是数学大牛,大模型技术本质就是一个数学模型,因此需要做这个方向的技术人员更多的是数学专业的大牛;比如说微分,概率,线性代数等。
他们的作用是设计更好的机器学习算法和打造更好的技术学习模型,比如怎么设计一个更好的神经网络,怎么设计更好的损失函数,怎么优化反向传播算法等。
这种工作更加偏向于底层技术和学术研究,而且这种人才待遇好,要求高,基本上不是名牌大学毕业的很难参与进来。
大模型“运维”人员
之所以说是“运维”人员,是这个方向需要做的就是根据企业的业务需求,找到合适的商业或开源模型,然后能够收集和处理训练数据,然后完成模型的训练,部署和升级等任务;能够熟练使用不同的模型和工具处理不同领域的问题。因为他们特别像传统的服务器维护人员,因此叫大模型“运维”。
这个技术方向就需要懂得大模型的基础理论,并且有很强的实操能力,然后有充足的业务经验,能够把大模型和业务场景相结合,因此这个更看重的是经验和实操,反而技术要求并不高,重要的是能够熟练使用各种工具。
大模型上层应用构建
再一个方向就是基于大模型构建上层应用,这个方向更像是一个传统的技术开发者,不需要了解大模型的运作原理,只需要能使用大模型的功能文档和接口文档即可,如果能懂一些大模型的理论就更好不过了。
个人建议
对大部分人来说,选择后两种方式比较好,最好是能把后两种方向结合起来。因为研究大模型基础技术的成本太高,绝大部分企业都没有足够的资金和技术来实现,因此其就业的压力和竞争力可想而知。
其次,后两个方向只需要有一定的经验和学习能力就可以做到,甚至很多程序员可以直接转行成为第三种大模型应用开发者。
所以,对大部分人来说,最好的选择就是搞大模型应用,门槛相对较低,前景广阔。
因此,对个人来说一定要弄清楚自己的定位,否则就会导致自己没有努力的方向;然后这个也想学,那个也想学,最后什么都会又什么都不会。
人工智能机器人小程序,感兴趣的可以点击查看:
_学习写作_
对技术人员来说,写作应该是一项必不可少的技能之一。写作的作用并不是说要你的文笔有多好,而是要把自己学习和思考的过程给记录下来,哪怕是错的。
一是方便后续回顾,二是写作的过程是一个从新思考的过程,有些不明白不清晰的地方在写作的过程中就会重新进行思考,这时就会有一个更加清晰的认识。
有句老话叫:“厉害的不是你学会了什么,而是你能够用简单的语言把你学的东西讲明白”。
学习是一个输入端过程,而写作是一个输出的过程。
就那小编个人来说,写公众号最重要的目的就是记录自己的学习过程;你说小编写的文章内容都是对的?那也不见得,可能很多地方理解有误,但这个并不重要。
有些东西当时没理解或者理解错了,后面可能有一天顿悟就明白过来了;而这也是为什么有些文章写的是同一个话题,但内容却不太一样的原因。
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
四、AI大模型商业化落地方案
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。