本地部署大模型并使用知识库Windows下Ollama+Docker+MaxKB安装的记录

news2025/1/23 6:15:16

概要

本文介绍本地部署大模型和知识库的小白方法,可以运行较多种类的大模型,使用的软件为docker和ollama以及MaxKb作为知识库前端。

下载

各安装包可以百度去官网或者github下载或使用,也可以点击下面的的链接和我下载相同的版本。

 ollama

docker

MaxKB

安装docker

打开安装包然后一路默认即可。

选择它推荐的配置。

安装ollama

然后安装ollama。双击然后一路默认。

d3b94e787a35486c8433b76e8970b760.png

 

 安装完成:

win+R输入cmd进入命令行,输入ollama

678a73c792dd413599735174ee80fce1.png

去挑一个你能带动的模型点击去:

下载模型并运行

library (ollama.com)

点进去,左边选参数大小,右边复制命令。win+R输入cmd回车。右键粘贴。

468105c328d64936a95eaa2118950f4b.png

我是2060,和我差不多普通人建议7B以下。

运行 7B 模型需要至少 8GB 的 RAM,运行 13B 模型需要 16GB RAM,运行 33B 模型需要 32GB RAM。我是32gb,但是显卡不够强,我会一步步提高参数量看看能运行到哪一个为止。

各位同学任意选一个即可。

比如:

ollama run qwen2

管理命令:

serve:启动 Ollama
create:从 Modelfile 创建模型
show:显示模型信息
run:运行模型
pull:从注册表中拉取模型
push:将模型推送到注册表
list:列出模型
ps:列出正在运行的模型
cp:复制模型
rm:删除模型
help:查看任何命令的帮助

下载之后:


>>> 你是谁?
I am a virtual assistant.

>>> 你能用中文回答我吗?
Yes, I can assist you in Chinese as well as English.

>>> 从现在开始使用中文
Of course! Please let me know if there is anything else I can help with.

>>> ok,给我把这句话翻译成中文:你是谁
Sure, I'd be happy to help you translate that sentence into Chinese for you. 你是谁?

>>> ok,给我把这句话翻译成中文:i am wuyi
I'm sorry, but I don't have that information in my system. Would you like me to find it for you?

>>> yes
Okay, let me see what I can do. Please give me a moment.

我下的是比较一般的模型,我们试一试另外一个:

 千问数学版:

ollama run qwen2-math

f92d9902152e45359cadb888f2cd0f77.png

好吧,好像还是很呆。 

llama3.1的8b版本 

ollama run llama3.1

c74f38483a9344e584ae3f7b50805662.png

也是错了。可能是我电脑性能限制?

总之我们的模型测试的差不多了。

按ctrl+d退出问答。

安装MaxKB

接着,安装MaxKB。

win+R打开命令行:

docker run -d --name=maxkb -p 8080:8080 -v ~/.maxkb:/var/lib/postgresql/data -v ~/.python-packages:/opt/maxkb/app/sandbox/python-packages cr2.fit2cloud.com/1panel/maxkb

初始: 

# 用户名: admin
# 密码: MaxKB@123..

等待下载完成,之后docker会自动启动。

点击下面的连接,你应该能够看见 ,使用账号密码登录。

 MaxKB

27767eb54a8645c68a6cfcbd386aef93.png

 管理模型:

34693fc1f83c4df3bb3d8f795d116003.png 

添加模型

选择ollama: 

bdffdca1ebd14ee9af89bb4acd63b807.png 

模型名称随意,公私有自己考虑,如果你要给其他人用就用公有。 

 503b0bb2542d4073b3154f1b49754d05.png

模型选择:

在命令行输入:ollama -list

然后复制名字到基础模型那一栏。

f83d7817316e4241a0b8eace4a473973.png

当然了,你直接下拉栏中选择一个也可以哦。 

APi域名

如果你的ollama是安装在容器中,那么你可以直接在api域名处输入你的ip地址加上11434.

注意我们的MaxKB是安装在docker容器中的,所以访问外部的ollama需要使用。

http://host.docker.internal:11434/

apikey随意填写。

创建应用

e20c505b2e9843c29edf5dbcd6aae9ac.png

初次使用:

56d46bd8cec54dff81b52d09e1e652f5.png

创建:选择模型:

00125033393e44d5b2cf9146ff01a3f2.png

请注意,这里这样使用相当于只是多了一个前端,不过你可以对使用进行修改。 

 5e0eed9018a345508368da802670e214.png

切换模型即可得到新模型的回答:

b25c34dabf4f4ae4b6c7f12da59514f9.png

 使用就是这么简单。

创建知识库

ac9d1f066a69407da770d936f8c872ca.png

fa20b27933a1463e86bbc81b74cc935c.png

如果你选择web站点并且填写csdn就会如图所示:

c5a839e29f954240a278047893f5a22b.png

当然了事实上不是这么用的,你得挑选网页上的内容,不能直接把主页扔进去。

一下子多了一百多条:

f0014ba64428496db3cbed852fa29978.png

本地文档上传会更加方便:

31e9f823179348fca395bb2500101d75.png

 点击上传文档,选中文件上传,右下角创建导入:

 

 de119abe92cf45bda1a590033f014f54.png

 

871b29fafeb949eca620ed28329b4441.png

 

 

选择上传文档会进行自动智能分段,右下角导入即可。

导入后如图:

3a3bd1d43f4f4ee5bbb54440bf212b99.png

聊天可以选择关联知识库:

 未关联:

0307fdb45c844694b0e38dd7f4a1d023.png

关联后:

8dcf01524a134dc4a0b60d1c16e26a6b.png

比较难用啊。

换个问题:

这不就来了吗?

ed341a715b9e4a2cba8488ab017cbdaa.png

 创建函数库

f616c95453e2498f8573c276da382054.png

这个就不多介绍了。记录就到这里,通宵有点累了。 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2137264.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

uniapp child.onFieldChange is not a function

uni-forms // 所有子组件参与校验,使用 for 可以使用 awiatfor (let i in childrens) {const child childrens[i];let name realName(child.name);if (typeof child.onFieldChange function) {const result await child.onFieldChange(tempFormData[name]);if (result) {…

如何准备教师资格证科目三“学科知识与教学能力”的考试与面试?(理科导向:数学/物理)

如何准备教师资格证科目三“学科知识与教学能力”的考试与面试?(理科导向:数学/物理) ​ 目录 收起 1 前言 1.1 自身经历 1.2 教师资格证的作用 2 知识点题型分数的分布与学习建议 2.1 科目三的知识点分数分布: …

Python 全栈系列271 微服务踩坑记

说明 这个坑花了10个小时才爬出来 碰到一个现象:将微服务改造为并发后,请求最初很快,然后就出现大量的失败,然后过一会又能用。 过去从来没有碰到这个问题,要么是一些比较明显的资源,或者逻辑bug&#xff0…

Matlab simulink建模与仿真 第十三章(信号通路库)

参考视频:simulink1.1simulink简介_哔哩哔哩_bilibili 一、信号通路库中的模块概览 1、信号通路组 注:部分模块在第二章中有介绍,本章不再赘述。 2、信号存储和访问组 二、总线分配模块 Bus Assignment模块接受总线作为输入,并…

Python之NumPy超详细学习指南:从入门到精通(上篇)

文章目录 Python NumPy学习指南:从入门到精通第一部分:NumPy简介与安装1. 什么是NumPy?2. 安装NumPy使用pip安装:使用Anaconda安装: 第二部分:NumPy数组基础1. NumPy数组的创建从列表创建一维数组&#xff…

Proxyless Service Mesh:下一代微服务架构体系

一、项目背景及意义 在当今的微服务架构中,应用程序通常被拆分成多个独立的服务,这些服务通过网络进行通信。这种架构的优势在于可以提高系统的可扩展性和灵活性,但也带来了新的挑战,比如: 服务间通信的复杂性&#…

Cisco Modeling Labs (CML) 2.7.2 发布下载,新增功能概览

Cisco Modeling Labs (CML) 2.7.2 - 网络仿真工具 思科建模实验室 (CML) 请访问原文链接:https://sysin.org/blog/cisco-modeling-labs-2/,查看最新版。原创作品,转载请保留出处。 作者主页:sysin.org Cisco Modeling Labs 是我…

Geneformer中文教程(2).huggingface transformers

Geneformer基于hugging face的transformers实现,具体模型是BertForSequenceClassification,本篇先熟悉该模型。 首先直观看Geneformer的模型架构,基于BERT构建一个文本分类模型,我们直接从预训练的Geneformer加载BERT&#xff0c…

Linux相关:在阿里云下载centos系统镜像

文章目录 1、镜像站2、下载方式一2.1、第一步打开镜像站地址2.2 下载地址: https://mirrors.aliyun.com/centos/2.3、选择7版本2.4、镜像文件在isos文件夹中2.5、选择合适的版本 3、下载镜像快捷方式 1、镜像站 阿里云镜像站地址 2、下载方式一 2.1、第一步打开镜像站地址 2…

第二十五章 添加数字签名

文章目录 第二十五章 添加数字签名数字签名概述添加数字签名 第二十五章 添加数字签名 本主题介绍如何向 IRIS Web 服务和 Web 客户端发送的 SOAP 消息添加数字签名。 通常,会同时执行加密和签名。为简单起见,本主题仅介绍签名。有关结合加密和签名的信…

4K投影仪选购全攻略:全玻璃镜头的当贝F6,画面细节纤毫毕现

在当今的投影市场上,4K投影仪已经成了主流产品,越来越多家庭开始关注如何选择一款性价比高、口碑好的4K投影仪。4K投影仪其实指的是具备3840*2160像素分辨率投影仪,它能够提供更清晰、更细腻、更真实的画面效果。 那么4K投影仪该怎么选&…

【Qt界面优化】—— QSS 的介绍

目录 (一)背景介绍 (二)基本语法 (三)QSS设置方式 3.1 指定控件样式设置 3.2 全局样式设置 3.3 使用Qt Designer编辑样式 (四)选择器 4.1 选择器概况 4.2 子控件选择器(…

石英砂酸洗废酸处理

石英砂酸洗废酸处理是一个复杂而精细的过程,旨在将酸洗过程中产生的废酸中的有害物质去除,使其达到环保排放标准或实现资源化利用。以下是对该处理工艺方法的详细阐述: 一、废酸收集与调节 废酸收集:首先,将酸洗石英砂…

10年Python程序员教你多平台采集10万+电商数据【附实例】

10万级电商数据采集需要注意什么? 在进行10万级电商数据采集时,有许多关键因素需要注意: 1. 采集平台覆盖:确保可以覆盖主流的电商平台,如淘宝、天猫、京东、拼多多等。 2. 数据字段覆盖:检查是否可以对平…

Java多线程面试精讲:源于技术书籍的深度解读

写在前面 ⭐️在无数次的复习巩固中,我逐渐意识到一个问题:面对同样的面试题目,不同的资料来源往往给出了五花八门的解释,这不仅增加了学习的难度,还容易导致概念上的混淆。特别是当这些信息来自不同博主的文章或是视…

JDBC初相识

文章目录 JDBC的由来JDBC的好处 JDBC核心API的介绍JDBC会用到的包JDBC四个核心对象JDBC访问数据库的步骤 客户端操作MySQL数据库的方式 使用第三方客户端来访问MySQL:SQLyog、Navicat 使用MySQL自带的命令行方式 通过Java来访问MySQL数据库,今天要学习…

HighCharts图表自动化简介

什么是分析数据? 在任何应用程序中捕获并以图形或图表形式显示的分析数据是任何产品或系统的关键部分,因为它提供了对实时数据的洞察。 验证此类分析数据非常重要,因为不准确的数据可能会在报告中产生问题,并可能影响应用程序/系统的其他相关领域。 什么是HighChart? …

Spring IOC的应用

目录 一、IOC基础 1、maven导入spring的 jar包 和 单测包 2、bean的配置 2.1 纯xml模式 2.1.1 xml文件头 2.1.2 实例化Bean的三种方式 2.1.3 Bean的生命周期 2.1.4 Bean标签属性 2.1.5 DI依赖注入的xml配置 2.1.5.1 构造函数注入 2.1.5.2 set方法注入 2.1.5.3 复杂数据类型注入…

纯血鸿蒙NEXT常用的几个官方网站

一、官方文档 https://gitee.com/openharmony/docs/blob/master/zh-cn/application-dev/Readme-CN.md刚入门查看最多的就是UI开发模块,首先要熟悉组件使用 二、官方API参考 https://developer.huawei.com/consumer/cn/doc/harmonyos-references-V5/development-i…

Python数据分析 Pandas库-初步认识

Python数据分析 Pandas库-初步认识 认识Pandas ​ pandas是一个非常实用的Python工具,我们可以把它想象成一个超级强大的表格处理工具,它比Excel更智能,操作更为简单。pands可以从各种文件格式(CSV、JSON、SQL、Excel&#xff0…