分类预测|基于差分优化DE-支持向量机数据分类预测完整Matlab程序 DE-SVM

news2024/11/16 20:49:01

分类预测|基于差分优化DE-支持向量机数据分类预测完整Matlab程序 DE-SVM

文章目录

  • 一、基本原理
      • DE-SVM 分类预测原理和流程
      • 总结
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

一、基本原理

DE-SVM 分类预测原理和流程

1. 差分进化优化算法(DE)

原理

  • 差分进化算法(DE):一种全局优化算法,通过对种群进行差分操作和变异,寻找全局最优解。主要操作包括变异、交叉和选择。
  • 过程
    • 初始化种群:随机生成一组候选解(个体)。
    • 变异:生成新的候选解,通过差分操作(个体之间的差异)创建变异个体。
    • 交叉:将变异个体与当前个体进行交叉,生成新的个体。
    • 选择:根据适应度函数选择保留最优个体。

应用

  • 在DE-SVM中,DE用于优化支持向量机(SVM)的超参数,以提高分类性能。

2. 支持向量机(SVM)

原理

  • 支持向量机(SVM):一种监督学习模型,用于分类和回归任务。通过寻找最佳的超平面,将不同类别的数据分开,并最大化类间的间隔(边界)。
  • 核心思想
    • 线性可分:在特征空间中找到一个超平面,使得两个类别的数据点之间的间隔最大。
    • 核方法:对于非线性可分问题,使用核函数将数据映射到更高维空间,使其线性可分。常用核函数包括高斯径向基函数(RBF)和多项式核函数。
    • 训练过程:通过求解最优化问题来确定超平面的参数。

应用

  • SVM用于构建分类模型,适用于处理复杂的分类任务,通过核方法扩展其能力以处理非线性问题。

3. DE-SVM模型流程

  1. 数据预处理

    • 数据清洗:处理数据中的缺失值和异常值。
    • 特征选择/提取:选择和提取对分类有用的特征。
    • 标准化:对数据进行标准化处理以提高模型的稳定性。
  2. 超参数优化(DE)

    • 定义优化目标:例如SVM分类器的分类准确率或交叉验证性能。
    • 初始化种群:随机生成一组超参数组合(例如C值和核函数参数)。
    • 变异:使用差分操作生成新的超参数组合。
    • 交叉:将变异个体与当前个体进行交叉生成新的候选解。
    • 选择:评估每个个体的适应度(通过训练和验证SVM模型),选择最优解。
  3. SVM模型训练

    • 超参数配置:使用DE优化得到的超参数(如惩罚参数C和核函数参数)配置SVM模型。
    • 训练模型:在训练集上训练SVM模型,通过核方法处理数据。
    • 模型验证:使用交叉验证等方法验证SVM模型的性能。
  4. 模型预测和评估

    • 预测:使用训练好的DE-SVM模型对测试集进行预测。
    • 评估:使用准确率、F1分数、混淆矩阵等指标评估模型的分类性能。
  5. 结果分析和调整

    • 分析结果:分析模型在各个评估指标上的表现,进行详细分析。
    • 调整优化:根据评估结果对模型进行调整,必要时重新进行超参数优化和模型训练。

总结

DE-SVM模型结合了差分进化算法(DE)和支持向量机(SVM)。DE用于优化SVM的超参数,而SVM用于处理分类任务,通过核方法扩展了其处理非线性问题的能力。整个流程包括数据预处理、超参数优化、SVM训练、模型预测和评估,旨在实现高效且准确的分类预测。

二、实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx');

%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)

%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];

%%  划分数据集
for i = 1 : num_class
    mid_res = res((res(:, end) == i), :);                         % 循环取出不同类别的样本
    mid_size = size(mid_res, 1);                                  % 得到不同类别样本个数
    mid_tiran = round(num_size * mid_size);                       % 得到该类别的训练样本个数

    P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入
    T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出

    P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入
    T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end

%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';

%%  得到训练集和测试样本个数  
M = size(P_train, 2);
N = size(P_test , 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = T_train;
t_test  = T_test ;

四、代码获取

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2133676.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

跟《经济学人》学英文:2024年09月07日这期 How fashion conquered television

How fashion conquered television More and more shows celebrate fancy clothes. Often brands call the shots 原文: From Tokyo to Seoul, on to New York, London, Milan and Paris, there are more “fashion weeks” in September than there are weeks i…

【Pandas操作2】groupby函数、pivot_table函数、数据运算(map和apply)、重复值清洗、异常值清洗、缺失值处理

1 数据清洗 #### 概述数据清洗是指对原始数据进行处理和转换,以去除无效、重复、缺失或错误的数据,使数据符合分析的要求。#### 作用和意义- 提高数据质量:- 通过数据清洗,数据质量得到提升,减少错误分析和错误决策。…

sharding-jdbc metadata load优化(4.1.1版本)

背景 系统启动时,会注意sharding-jdbc提示加载metadata 于是想看看里面做了什么事情 问题追踪 debug后可以观察走到了该类 org.apache.shardingsphere.shardingjdbc.jdbc.core.context.ShardingRuntimeContext#loadSchemaMetaData 先看这个shardingRuntimeConte…

玉米种子质量检测系统源码分享

玉米种子质量检测检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Computer…

数据结构——栈和队列(队列的定义、顺序队列以及链式队列的基本操作)

目录 队列(queue)的定义 顺序队——队列的顺序表示和实现 顺序队列(循环队列)的类型定义 顺序队列上溢问题的解决方法 ​编辑 循环队列的基本操作 队列的基本操作——队列的初始化 队列的基本操作——求队列的长度 队列的…

[数据集][目标检测]岩石种类检测数据集VOC+YOLO格式4766张9类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):4766 标注数量(xml文件个数):4766 标注数量(txt文件个数):4766 标注…

CurrentHashMap的底层原理

CurrentHashMap在jdk1.8之前使用的是分段锁,在jdk1.8中使用"CAS和synchronized"来保证线程安全。 jdk1.8之前的底层实现 CurrentHashMap在jdk1.8之前,通过Segment段来实现线程安全。 Segment 段 ConcurrentHashMap 和 HashMap 思路是差不多…

TDengine 签约前晨汽车,解锁智能出行的无限潜力

在全球汽车产业转型升级的背景下,智能网联和新能源技术正迅速成为商用车行业的重要发展方向。随着市场对环保和智能化需求的日益增强,企业必须在技术创新和数据管理上不断突破,以满足客户对高效、安全和智能出行的期待。在这一背景下&#xf…

如何通过 PhantomJS 模拟用户行为抓取动态网页内容

引言 随着网页技术的不断进步,JavaScript 动态加载内容已成为网站设计的新常态,这对传统的静态网页抓取方法提出了挑战。为了应对这一挑战,PhantomJS 作为一个无头浏览器,能够模拟用户行为并执行 JavaScript,成为了获…

探索数据结构:初入算法之经典排序算法

🔑🔑博客主页:阿客不是客 🍓🍓系列专栏:渐入佳境之数据结构与算法 欢迎来到泊舟小课堂 😘博客制作不易欢迎各位👍点赞⭐收藏➕关注 一、插入排序 步骤: 从第一个元素开…

OpenAI 刚刚推出 o1 大模型!!突破LLM极限

北京时间 9 月 13 日午夜,OpenAI 正式发布了一系列全新的 AI 大模型,专门用于应对复杂问题。 这一新模型的出现代表了一个重要突破,其具备的复杂推理能力远远超过了以往用于科学、代码和数学等领域的通用模型,能够解决比之前更难的…

Python和R均方根误差平均绝对误差算法模型

🎯要点 回归模型误差评估指标归一化均方根误差生态状态指标神经网络成本误差计算气体排放气候算法模型 Python误差指标 均方根误差和平均绝对误差 均方根偏差或均方根误差是两个密切相关且经常使用的度量值之一,用于衡量真实值或预测值与观测值或估…

HarmonyOS开发实战( Beta5.0)骨架屏实现案例实践

鸿蒙HarmonyOS开发往期必看: HarmonyOS NEXT应用开发性能实践总结 最新版!“非常详细的” 鸿蒙HarmonyOS Next应用开发学习路线!(从零基础入门到精通) 介绍 本示例介绍通过骨架屏提升加载时用户体验的方法。骨架屏用…

无法加载用户配置文件怎么解决?

你有没有遇到过这种问题,蓝屏提示“User Profile Services服务登录失败。无法加载用户配置文件”。为什么会出现问题呢?可能的原因包括: 用户配置文件损坏:用户的配置文件可能已损坏,导致系统无法读取。 权限问题&…

linux更换阿里镜像源

第一步:进入 /etc/yum.repos.d目录下 cd /etc/yum.repos.d 第二步:编辑 CentOS-Base.repo 打开该文件 vi CentOS-Base.repo 第三步:点击键盘i,进入编辑模式 删除文件的全部内容:将阿里下面配置复制粘贴进取 [base] nam…

Ribbon (WPF)

Ribbon (WPF) 在本文中主要包含以下内容: Ribbon组件和功能应用程序菜单快速访问工具栏增强的工具提示 Ribbon是一个命令栏,它将应用程序的功能组织到应用程序窗口顶部的一系列选项卡中。Ribbon用户界面(UI)增加了特性和功能的可发现性,使用…

神经网络学习笔记——如何设计、实现并训练一个标准的前馈神经网络

1.从零设计并训练一个神经网络https://www.bilibili.com/video/BV134421U77t/?spm_id_from333.337.search-card.all.click&vd_source0b1f472915ac9cb9cdccb8658d6c2e69 一、如何设计、实现并训练一个标准的前馈神经网络,用于手写数字图像的分类,重…

如何制作Vector Vflash中加载的DLL文件--自动解锁刷写过程中27服务

案例背景: vFlash 是一种易于使用的工具,用于对一个或多个 ECU 进行刷写软件。由于方法灵活,它可以支持各种汽车原始设备制造商的不同刷写规范。它支持通过 CAN、CAN FD、FlexRay、LIN、以太网/DoIP 和以太网/SoAd 对 ECU 进行刷写。 vFlas…

SpringSecurity原理解析(六):SecurityConfigurer 解析

1、SecurityConfigurer SecurityConfigurer 在 Spring Security 中是一个非常重要的接口,观察HttpSecurity 中的很多 方法可以发现,SpringSecurity 中的每一个过滤器都是通过 xxxConfigurer 来进行配置的,而 这些 xxxConfigurer 其实都是 Sec…

针对Docker容器的可视化管理工具—DockerUI

目录 ⛳️推荐 前言 1. 安装部署DockerUI 2. 安装cpolar内网穿透 3. 配置DockerUI公网访问地址 4. 公网远程访问DockerUI 5. 固定DockerUI公网地址 ⛳️推荐 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下…