机器学习--支持向量机(SVM)

news2024/9/20 19:41:47

支持向量机(线性) S V M SVM SVM

引入

S V M SVM SVM 用于解决的问题也是 c l a s s i f i c a t i o n classification classification,这里 y ∈ { − 1 , 1 } y \in \{-1, 1\} y{1,1}

  比如说这样一个需要分类的训练数据:

在这里插入图片描述

  我们可以有很多直线来分开这两坨东西,就像这样:

在这里插入图片描述

  我们看到这三条线 l 1 , l 2 l_1, l_2 l1,l2 l 3 l_3 l3,我们显然可以看出来 l 1 l_1 l1 l 2 l_2 l2 l 3 l_3 l3 要更优秀,但是我们怎么定义这个所谓的 “优秀” 呢?

间隔 M a r g i n Margin Margin 和 最小化 ∣ w ∣ |w| w

  我们这样理解,考虑将 l l l 在样本空间中平移,直到这条直线第一次碰到两组东西数据时停止。这样我们能得到两根 “边界线”(图中绿色的线)。

在这里插入图片描述

  我们发现,我们认为最优秀的线所形成的 “边界线” 的距离是最大的,我们把这个距离成为间隔 m a r g i n margin margin。于是在 S V M SVM SVM 的思想中,我们就是要找到 m a r g i n margin margin 最大的那条线。

  我们把这些"平移过程中第一次碰到的向量"称为支持向量

  我们把这条线根据之前的习惯写成这样:

h ( x ) = w T x h(x) = w^Tx h(x)=wTx

  然后我们考虑如何计算出 m a r g i n margin margin。首先对于一个支持向量 x ( i ) x^{(i)} x(i) 来说,它到直线的距离可以写成:

d = ∣ ∑ j = 0 n w j x j ( i ) ∣ ∑ j = 1 n w j 2 = ∣ w T x ( i ) ∣ ∣ w ∣ d = \frac{\bigg|\sum\limits_{j = 0}^n w_jx^{(i)}_j \bigg|}{\sqrt{\sum\limits_{j = 1}^n w_j^2}} = \frac{\bigg|w^Tx^{(i)}\bigg|}{|w|} d=j=1nwj2 j=0nwjxj(i) =w wTx(i)

  然后又因为我们知道, h ( x ) = w T x h(x) = w^Tx h(x)=wTx h ( x ) = ( a w ) T x h(x) = (aw)^Tx h(x)=(aw)Tx 本质上表示的是同一条直线(其中 a a a 是常数)。所以我们可以用 a a a 来放缩直线 h ( x ) h(x) h(x),使得 ∣ ( a w ) T x ( i ) ∣ = 1 |(aw)^Tx^{(i)}| = 1 (aw)Tx(i)=1

  此时,支持向量 x ( i ) x^{(i)} x(i) 到直线的距离就是:

d = 1 ∣ w ∣ d = \frac1{|w|} d=w1

  我们希望 d d d 最大,那么我们就希望 ∣ w ∣ |w| w 最小了。

  但是这只是对于支持向量来说,那么对于其他向量来说又要满足什么要求呢?

限制条件

  对于其他非支持向量 x ( j ) x^{(j)} x(j) 来说, x ( j ) x^{(j)} x(j) 到直线的距离显然是大于支持向量 x ( i ) x^{(i)} x(i) 的,所以我们有:

d x ( j ) = ∣ w T x ( j ) ∣ ∣ w ∣ > d x ( i ) = 1 ∣ w ∣ d_{x^{(j)}} = \frac{\bigg|w^Tx^{(j)}\bigg|}{|w|} > d_{x^{(i)}} = \frac 1{|w|} dx(j)=w wTx(j) >dx(i)=w1

  于是我们有:

∣ w T x ( j ) ∣ > 1 \bigg|w^Tx^{(j)}\bigg| > 1 wTx(j) >1

  那么对于所有向量来说:

∣ w T x ∣ ≥ 1 \bigg|w^Tx\bigg| \ge 1 wTx 1

  如果把绝对值去掉的话,我们就要分是 y y y 属于 1 1 1 类还是 − 1 -1 1 类了。而经过分类讨论我们会发现,对于所有向量 x x x,我们都有:

y ( i ) [ w T x ( i ) ] ≥ 1                ( i = 1 ∼ m ) y^{(i)}[w^Tx^{(i)}] \ge 1 \;\;\;\;\;\;\;(i = 1 \sim m) y(i)[wTx(i)]1(i=1m)

总结

  于是我们可以得到支持向量机想要我们做的事就是这样的:

min ⁡ w 1 2 ∣ w ∣ s . t .      y ( i ) [ w T x ( i ) ] ≥ 1 \begin{aligned} \min\limits_{w} \frac 12 &|w| \\ &s.t. \; \;y^{(i)}[w^Tx^{(i)}] \ge 1 \end{aligned} wmin21ws.t.y(i)[wTx(i)]1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2130781.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据…

Brave编译指南2024 Windows篇:安装Git(四)

1.引言 在编译Brave浏览器的过程中,Git是必不可少的工具之一。作为最流行的分布式版本控制系统,Git允许开发者高效地管理和协作开发源码。通过Git,您可以轻松获取、更新和提交Brave的源码版本,并跟踪所有更改记录。无论是独立开发…

大模型入门 ch 03:注意力机制

本文是github上的大模型教程LLMs-from-scratch的学习笔记,教程地址:教程链接 Chapter 3: Attention Mechanism 本文首先从固定参数的注意力机制说起,然后拓展到可以训练的注意力机制,然后加入掩码mask,最后…

基于 onsemi NCV78343 NCV78964的汽车矩阵式大灯方案

一、方案描述 大联大世平集团针对汽车矩阵大灯,推出 基于 onsemi NCV78343 & NCV78964的汽车矩阵式大灯方案。 开发板搭载的主要器件有 onsemi 的 Matrix Controller NCV78343、LED Driver NCV78964、Motor Driver NCV70517、以及 NXP 的 MCU S32K344。 二、开…

抖音微信超火国庆节国旗头像生成源码

源码介绍: 抖音微信超火国庆节国旗头像生成源码,静态页前端生成速度超快!源码直接上传到服务器即可使用。 1、打开地址后点击上传->选一张你喜欢的头像->然后点右边箭头符合选款式->最后点保存头像->按照提示 2、保存到手机即…

开源多场景问答社区论坛Apache Answer本地部署并发布至公网使用

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

CCDO|数据跃动未来:首席数据官如何引领构建活数据引擎

在数字化浪潮汹涌澎湃的今天,数据已成为企业最宝贵的资产之一,它不仅记录着过去,更预示着未来的方向。随着大数据、人工智能、云计算等技术的飞速发展,数据的潜力被前所未有地激发,而首席数据官(CDO&#x…

T4周:猴痘病识别

>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客** >- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)** 1. 设置GPU 如果使用的是CPU可以忽略这步 …

Eclipse折叠if、else、try catch的{}

下载插件com.cb.eclipse.folding_1.0.6.jar。将插件放到eclipse的dropins文件夹中。修改配置,然后保存,重启Eclipse即可。

Flink快速上手

Flink快速上手 批处理Maven配置pom文件java编写wordcount代码 有界流处理无界流处理 批处理 Maven配置pom文件 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://ww…

《深度学习》深度学习 框架、流程解析、动态展示及推导

目录 一、深度学习 1、什么是深度学习 2、特点 3、神经网络构造 1&#xff09;单层神经元 • 推导 • 示例 2&#xff09;多层神经网络 3&#xff09;小结 4、感知器 神经网络的本质 5、多层感知器 6、动态图像示例 1&#xff09;一个神经元 相当于下列状态&…

通信原理:绪论

1、消息、信号与信息 消息&#xff1a; 通信系统要传输的对象&#xff0c;是具体的、物理上存在的东西。也是信息的载体。形式多种&#xff1a; 连续消息&#xff1a;语音、温度、活动图片.离散消息&#xff1a;数据、符号、文字. 信息&#xff1a; 消息中所蕴含的内容&…

proteus+51单片机+实验(LCD1620、定时器)

目录 1.LCD1602液晶显示屏 1.1基本概念 1.1.1LCD的简介 1.1.2LCD的显示原理 ​​​1.1.3LCD的硬件电路 1.1.4LCD的常见指令 1.1.5LCD的时序 ​​​​​​​1.2代码 1.2.1写命令和写数据操作 1.2.2初始化和测试代码 1. 3.3功能函数 1.3proteus代码 1.3.1器件代码 1.…

几种手段mfc140u.dll丢失的解决方法,了解mfc140u.dll

在使用Windows操作系统时&#xff0c;许多用户可能会遇到“找不到mfc140u.dll”或“mfc140u.dll未找到”的错误提示。这个错误通常是由于该文件丢失或损坏所致。本文将详细介绍mfc140u.dll文件的作用、丢失的原因及其解决方法&#xff0c;帮助您快速恢复系统的正常运行。 一、m…

无人机视角的道路损害数据集,2400张图像,包括纵向裂缝(LC)、横向裂缝(TC)、鳄鱼裂缝(AC)、斜裂(OC)、修补(RP)和坑洞(PH),共2.3GB

数据集名称 无人机视角的道路损害数据集 数据集描述 这是一个专注于道路损害检测的数据集&#xff0c;包含了从无人机视角拍摄的2400张高清图像&#xff0c;涵盖了六种典型的道路损害类型&#xff1a;纵向裂缝&#xff08;LC&#xff09;、横向裂缝&#xff08;TC&#xff0…

c++ 点云生成二维俯视图

🙋 结果预览 一、代码实现 #include <pcl/io/pcd_io.h> #include <pcl/point_types.h> #include

S7_1200配方功能快速入门

配方数据文件按照标准 CSV 格式存储在 S7-1200 CPU 装载存储器或 S7-1200 SIMATIC 存储卡“程序卡”中。分别可通过 PLC Web 服务器或对于存储卡文件操作&#xff0c;将数据文件传送到 PC 进行管理和查看。也可将修改过后的配方数据文件上传至PLC&#xff0c;再通过“RecipeImp…

【数据结构】详细介绍各种排序算法,包含希尔排序,堆排序,快排,归并,计数排序

目录 1. 排序 1.1 概念 1.2 常见排序算法 2. 插入排序 2.1 直接插入排序 2.1.1 基本思想 2.1.2 代码实现 2.1.3 特性 2.2 希尔排序(缩小增量排序) 2.2.1 基本思想 2.2.2 单个gap组的比较 2.2.3 多个gap组比较(一次预排序) 2.2.4 多次预排序 2.2.5 特性 3. 选择排…

【AcWing】869. 试除法求约数

约数&#xff1a;当前数能整除这个数。 和判断质数一样的道理&#xff0c;同样是试除法。 约数也一定是成对出现的。在枚举的时候也可以只枚举较小的那一个约数就可以了&#xff0c;较大的那个约数直接算。 #include<iostream> #include<algorithm> #include<…

无人机之处理器篇

无人机的处理器是无人机系统的核心部件之一&#xff0c;它负责控制无人机的飞行、数据处理、任务执行等多个关键功能。以下是对无人机处理器的详细解析&#xff1a; 一、处理器类型 无人机中使用的处理器主要包括以下几种类型&#xff1a; CPU处理器&#xff1a;CPU是无人机的…