佰朔资本:沪指跌0.23%,金融板块集体上扬,半导体等板块下挫

news2025/1/22 9:16:47

6日早盘,沪指盘中轰动回落,深证成指、创业板指弱势下探,上证50指数逆市上扬,场内超4400股飘绿。

到午间收盘,沪指跌0.23%报2782点,深证成指跌1.01%,创业板指跌1.29%,上证50指数微涨0.05%,两市合计成交3502亿元。

盘面上看,半导体、家居、医药、酿酒、地产等板块走低,保险、券商、银行板块团体上扬,汽车拆解、海南自贸概念等生动。

 5月下旬以来,大盘阶段性轰动整固,在宏观经济弯曲复苏、ETF被迫资金放量流入主导商场风格的布景下,以银行、公用事业为代表的部分中心盈余资产稳健走强、领涨大盘,而TMT、新能源等典型科创成长方向体现较为一般。但近期商场风格开始发生变化:一方面是买卖略显“拥堵”的盈余权重股在8月末开始大幅补跌、开释出部分流动性,而成长方向中部分景气度较高,或股价超跌而根本面有改善/改善预期的分支遭到资金注重、不断有标的生动体现,典型如消费电子、储能、传媒游戏等现已企稳修正。

结构上,进入9月,一方面是中报业绩落地,业绩不确定性危险阶段性开释,另一方面是美国降息窗口即将翻开,全球资金再平衡有助于成长方向估值修正,同时AI终端、低空经济等强工业趋势分支在9月将迎来密集的事件催化,A股成长板块进入到积极布局的时点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2119621.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

不小心删除丢失了所有短信?如何在 iPhone 上查找和恢复误删除的短信

不小心删除了一条短信,或者丢失了所有短信?希望还未破灭,下面介绍如何在 iPhone 上查找和恢复已删除的短信。 短信通常都是非正式和无关紧要的,但短信中可能包含非常重要的信息。因此,如果您删除了一些短信以清理 iPh…

LeetCode第414场周赛(第一题)

目录 一:题目:3280. 将日期转换为二进制表示 一:题目:3280. 将日期转换为二进制表示 给你一个字符串 date,它的格式为 yyyy-mm-dd,表示一个公历日期。 date 可以重写为二进制表示,只需要将年…

idea创建一个spring项目,并编写一个初级spring项目实战(全网最详细)

1.创建spring项目 创建后界面显示 2.再pom.xml文件中添加Spring框架依赖 <dependency><groupId>org.springframework</groupId><artifactId>spring-context</artifactId><version>6.0.10</version> </dependency> 注意&…

Spring中FactoryBean的高级用法实战

❃博主首页 &#xff1a; 「码到三十五」 &#xff0c;同名公众号 :「码到三十五」&#xff0c;wx号 : 「liwu0213」 ☠博主专栏 &#xff1a; <mysql高手> <elasticsearch高手> <源码解读> <java核心> <面试攻关> ♝博主的话 &#xff1a…

AT3340-6T杭州中科微BDS定位授时板卡性能指标

AT3340-6T是一款高性能多系统卫星定位安全授时板卡&#xff0c;可通过配置支持各个单系统的定位授时。 外观尺寸&#xff1a; 电气参数 应用领域&#xff1a; 通信基站授时 电力授时 广播电视授时 轨道系统授时 金融系统授时 其他授时应用 注意事项&#xff1a; 为了充分发挥…

nvidia-smi命令视图含义

第一部分&#xff1a;NVIDIA-SMI 标题 ---------------------------------------------------------------------------------------- | NVIDIA-SMI 555.42.06 Driver Version: 555.42.06 CUDA Version: 12.5 | ------------------------------------------------------------…

ML 系列:机器学习和深度学习的深层次总结(01)

​ 文章目录 一、说明二、人工智能和机器学习三、机器学习的类型四、结论 一、说明 欢迎学习机器学习系列。这门综合课程目前包括40个部分&#xff0c;指导您了解机器学习、统计和数据分析的基本概念和技术。以下是到目前为止涵盖的关键主题的简要概述&#xff1a; 1 机器学习…

C与汇编之间的相互调用(29)

1 先来看一下 基本的调用规则。 注意&#xff1a; 程序通过 r1 -r4 来保存 传递的参数&#xff0c;如果 超过了 4个参数怎么办&#xff0c; 那就 放到栈里面。 注意&#xff1a; 堆栈是满递减&#xff0c; FD。 子程序的返回结果 会放到R0 里面。 2 然后是 c 语言调用 汇编语言…

如何最好地制定自动化测试策略

尽管不能否认手动测试的价值&#xff0c;自动化测试的需求却在不断增长。自动化测试可以为公司和团队带来许多好处&#xff1a;时间效率高、覆盖面广。 如何最好地制定自动化测试策略呢&#xff1f; 在本文中&#xff0c;我将展示测试自动化策略的所有7个阶段中的一些最佳实践…

gpt4最新保姆级教程

如何使用 WildCard 服务注册 Claude3 随着 Claude3 的震撼发布&#xff0c;最强 AI 模型的桂冠已不再由 GPT-4 独揽。Claude3 推出了三个备受瞩目的模型&#xff1a;Claude 3 Haiku、Claude 3 Sonnet 以及 Claude 3 Opus&#xff0c;每个模型都展现了卓越的性能与特色。其中&a…

LLM - 理解 多模态大语言模型 (MLLM) 的发展与相关技术 (一)

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/142063880 免责声明&#xff1a;本文来源于个人知识与公开资料&#xff0c;仅用于学术交流&#xff0c;欢迎讨论&#xff0c;不支持转载。 多模态…

揭秘世界上那些同时横跨两大洲的国家

我们在《世界人口过亿的一级行政区分布》盘点全球是那些人口过亿的一级行政区。 现在我们介绍五个横跨两州的国家&#xff0c;并整理七大洲和这些国家的KML矢量数据分析分享给大家&#xff0c;如果你需要这些数据&#xff0c;请在文末查看领取方式。 世界上横跨两大洲的国家 …

【Python报错已解决】SyntaxError: positional argument follows keyword argument

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 文章目录 前言一、问题描述1.1 报错示例1.2 报错分析1.3 解决思路 二、解决方法2.1 方法一&#xff1a;调整参数顺序2.2 步骤二…

excel分列

Excel中有这么几列&#xff0c;希望将每一列内容再分出3列&#xff1a; 可以通过以下步骤在 Excel 表格中将 B 到 F 列的内容拆分为每列的 3 列&#xff0c;分别为 pred_label、pred_score 和 pred_class&#xff1a; 确定数据结构&#xff1a;假设 B 列到 F 列中的内容都是按类…

洛谷 P10798 「CZOI-R1」消除威胁

题目来源于&#xff1a;洛谷 题目本质&#xff1a;贪心&#xff0c;st表&#xff0c;单调栈 解题思路&#xff1a;由于昨天联练习了平衡树&#xff0c;我就用平衡树STL打了个暴力&#xff0c;超时得了30分 这是暴力代码&#xff1a; #include<bits/stdc.h> using name…

小琳AI课堂:多模态模型的训练与应用

引言 大家好&#xff0c;这里是小琳AI课堂。今天我们将探讨一个热门且前沿的话题——多模态模型的训练与应用。让我们一起走进这个复杂而精致的艺术创作过程&#xff01; 训练关键步骤 1. 数据收集与预处理 准备工作&#xff1a;从多种来源和模态收集数据&#xff0c;如文…

苍穹外卖()

day1 软件开发整体介绍 软件开发流程&#xff1a;需求分析&#xff08;需求规格说明书、产品原型&#xff09;->设计&#xff08;UI设计、数据库设计、接口设计&#xff09;->编码&#xff08;项目代码&#xff0c;单元测试&#xff09;->测试&#xff08;测试用例、…

C++:入门篇(补充C语言中的不足)

前言 这篇文章是C的第一篇文章&#xff0c;主要是补充C语言中存在的不足而扩展的一些新的语法&#xff0c;有了这篇文章作为杂序&#xff0c;后面再介绍其他内容就要清晰地多 C&#xff1a;入门篇 一、namespace 命名空间&#xff08;一&#xff09;域的概念&#xff08;二&…

【深度学习讲解笔记】第1章-机器学习基础(2)

模型与函数构造 之前讲到&#xff0c;模型是由机器学习决定参数值的函数&#xff0c;通过训练&#xff0c;机器可以找出最好的一组参数使得函数的输出最优。常见的模型有线性模型&#xff0c;指数模型&#xff0c;对数模型等。在线性模型中&#xff0c;w和b是可学习的参数&…

【Hadoop|HDFS篇】DataNode概述

1. DataNode的工作机制 1&#xff09;一个数据块在DataNode上以文件形式存储在磁盘上&#xff0c;包括两个文件&#xff0c;一个是数据本身&#xff0c;一个是元数据包括数据块的长度&#xff0c;块数据的校验和&#xff0c;以及时间戳。 2&#xff09;DataNode启动后向NameNod…