自定义类型:结构体(续)

news2024/9/16 10:31:56

目录

一. 结构体的内存对齐

1.1 为什么存在内存对齐?

1.2 修改默认对齐数

二. 结构体传参

三. 结构体实现位段


一. 结构体的内存对齐

在前面的文章里我们已经讲过一部分的内存对齐的知识,并举出了两个例子,我们再举出两个例子继续说明:

struct S3
{
	double a;
	int b;
	char c;
};
int mian()
{
    printf("%zd\n",sizeof(struct S3);
    return 0;
}

有了之前的知识,我们可以大胆计算一下这次的结果是多少,double占8个字节,所以int可以紧接着double后面进行排序,所以一共应该是8+4+1=13,又因为我们对齐规则的第三条:结构体的总大小为最大对齐数的整数倍,所以最终结果应该是16,让我们来验证一下: 结果是正确的,我们再来举另一个例子:

struct S3
{
	double d;
	char c;
	int i;
};
struct S4
{
	char c1;
	struct S3 s3;
	double d;
};
int main()
{
	printf("%d\n", sizeof(struct S4));
	return 0;
}

 大家可以发现的是这个例子不同之处是结构体中嵌套了另一个结构体,这个应该怎么计算?我们来回顾一下对齐规则的第四条:如果结构体中嵌套了另一个结构体,那么嵌套的结构体应该对齐到其成员的最大对齐数的整数倍处,结构体整体的大小应该是所有对齐数的整数倍(包含嵌套结构体成员)所以我们这个的最终结果就是32。

1.1 为什么存在内存对齐?

平台原因:不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
性能原因:数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。假设一个处理器总是从内存中取8个字节,则地址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对齐成8的倍数,那么就可以用一个内存操作来读或者写值了。否则,我们可能需要执行两次内存访问,因为对象可能被分放在两个8字节内存块中。
总体来说:内存对齐是拿空间换取时间的做法。 那在设计结构体的时候,我们既要满⾜对⻬,⼜要节省空间,如何做到: 让占用空间小的成员尽量集中在一起。
比如:
struct s1
{
	char a;
	int b;
	char c;
};
struct s2
{
	char a;
	char b;
	int c;
};

虽然s1和s2的成员是一样的,但是排放的位置不一样,空间占用的内存却是不一样的,所以我们尽可能的让占用空间小的成员尽量集中在一起。

1.2 修改默认对齐数

#pragma 这个预处理指令,可以改变编译器的默认对齐数。
#include <stdio.h>
#pragma pack(1)//设置默认对齐数为1
struct S
{
	char c1;
	int i;
	char c2;
};
#pragma pack()//取消设置的对齐数,还原为默认
int main()
{
	//输出的结果是什么?
	printf("%zd\n", sizeof(struct S));
	return 0;
}

原本结构体的大小应该是12,但是我们将默认对齐数改变之后结果就变成6,所以当默认对齐的方式不一样的时候,我们可以自己更改默认对齐数。

二. 结构体传参

对于结构体传参,要怎样做呢?

struct S
{
	int data[1000];
	int num;
};
struct S s = { {1,2,3,4}, 1000 };
//结构体传参
void print1(struct S s)
{
	printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{
	printf("%d\n", ps->num);
}
int main()
{
	print1(s); //传结构体
	print2(&s); //传地址
	return 0;
}
上面的 print1 和 print2 函数哪个好些?答案是: 首选print2函数 也就是首选结构体地址传参的方法 ,原因:1. 函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销 。2. 如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的下降
结论: 结构体传参的时候,要传结构体的地址

三. 结构体实现位段

3.1 什么是位段?

位段的声明和结构是类似的,有两个不同:
1. 位段的成员必须是 int、unsigned int 或signed int ,在C99中位段成员的类型也可以
选择其他类型。 2. 位段的成员名后边有一个冒号和一个数字
struct A
{
	int a : 2;
    int b : 3;
    int c : 4;

};

上面的A就是一个段位类型,那么A占的内存是多少呢?位段的位其实就是二进制的位,也就是说它的单位是bit位,意思就是a占2个bit位,b占3个bit位,其实这样就是更好的省下空间,比如我们在某些需求上没有要求很大的空间,一些小的空间就可以满足,我们就没有必要去给整整四个字节也就是32个bit位这么多。而且我们还要注意的是,比如上面的int a,int类型是占4个字节,也就是32个bit位,所以最多a:后面最大只能是32,这个也是需要注意的一点。

3.2 位段的内存分配

在我们简单了解了位段是是什么之后?我们就来了解一下位段是如何分配内存的?为了方便演示,我们拿char类型的来说明:

struct A
{
	char a : 3;
	char b : 4;
	char c : 5;
	char d : 4;
};

int main()
{
	struct A s = { 0 };
	s.a = 10;
	s.b = 12;
	s.c = 3;
	s.d = 4;
	printf("%zd\n", sizeof(struct A));
}

跟据上图我们来做一个详细解释:首先我们先开放一个字节8个bit位,但是给定了空间后,在空间内部是从右向左使用,还是从左向右使用,这个不确定。另外就是当剩下的空间不足以存放下一个成员的时候,空间是浪费还是使用,不确定。在上面我们只是假设从右向左,浪费。

 运行之后是3个字节,所以跟我们的验证是一样的,但是在不同的编译器上可能会出现不同的结果。

 在我们将数字转换成二进制之后放入对应的内存空间中的时候,对于像a这样的,二进制是1010,但是内存空间只有3个bit位的话,我们就放从右向左的三位(这个也是按照编译器来的),然后实际存放的数值就按4个bit位来算。这就是我们位段的一些简单介绍。

3.3 位段的一些跨平台问题

1. int 位段被当成有符号数还是无符号数是不确定的。
2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机器会
出问题。)
3. 位段中的成员在内存中从左向右分配,还是从右向左分配,标准尚未定义。
4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是舍弃
剩余的位还是利用,这是不确定的。
总结: 跟结构体相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在

位段的用处还是有很多的:在网络协议中,IP数据报的格式,我们可以看到其中很多的属性只需要几个bit位就能描述,这里使用位段,能够实现想要的效果,也节省了空间,这样网络传输的数据报大小也会较小一些,对网络的畅通是有帮助的

3.4位段使用的注意事项

位段的几个成员共有同一个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位 置处是没有地址的。内存中每个字节分配一个地址,一个字节内部的bit位是没有地址的。
所以不能对位段的成员使用&操作符,这样就不能使用scanf直接给位段的成员输入值,只能是先输入放在⼀个变量中,然后赋值给位段的成员。
struct A
{
	
	int _a : 2;
	int _b : 5;
	int _c : 10;
	int _d : 30;
};
int main()
{
	struct A sa = { 0 };
	scanf("%d", &sa._b);//这是错误的

	//正确的⽰范
	int b = 0;
	scanf("%d", &b);
	sa._b = b;
	return 0;
}

大家可以自己去尝试一下这段代码。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2117065.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

python进阶篇-day08-数据结构与算法(线性结构介绍与链表实现)

数据的存储和组织形式 程序 数据结构 算法 一. 算法介绍 概述目的 都是可以提高程序的效率(性能), 面试高频考点 数据结构介绍 数据的存储和组织形式, 同样的空间, 不同的结构, 存储的数据不同, 操作方式也不同 算法介绍 为了解决实际的业务问题, 而考虑出来的方法和思路 …

龙芯+FreeRTOS+LVGL实战笔记(新)——06添加二级按钮

本专栏是笔者另一个专栏《龙芯+RT-Thread+LVGL实战笔记》的姊妹篇,主要的区别在于实时操作系统的不同,章节的安排和任务的推进保持一致,并对源码做了完善与优化,各位可以先到本人主页下去浏览另一专栏的博客列表(目前已撰写36篇,图1所示),再决定是否订阅。此外,也可以…

超强的截图工具:PixPin

你是否还在为寻找一款功能强大、操作简便的截图工具而烦恼&#xff1f;市面上那么多工具&#xff0c;常常让人无从选择。今天&#xff0c;想给大家安利一款神器——PixPin&#xff0c;一款真正解放双手的截图工具。 想象一下&#xff0c;你只需要按下快捷键就能轻松完成多种截…

雷电9模拟器安装magisk和lsposed

模拟器环境配置 1、开启root 2、开启System.vmdk可写入 安装magisk 1、新建模拟器、开启root权限、并安装debug版magisk 下载地址去上面吾爱论坛作者文章下载吧&#xff01;支持他一下&#xff01; 2、打开magisk的app&#xff0c;点击安装 如果弹出获取权限&#xff0c;直接…

【Socket网络编程原理实践】

socket 基于 TCP/IP协议实现&#xff0c;在网络模型中属于传输层 Java 网络编程中的核心概念 IP 地址&#xff1a;用于标识网络中的计算机端口号&#xff1a;用于标识计算机上的应用程序或进程Socket&#xff08;套接字&#xff09;&#xff1a;网络通信的基本单位&#xff0…

冒泡排序算法介绍

冒泡排序算法介绍 如果真的累了&#xff0c;就拉上窗帘关上手机关掉闹钟深呼吸一口气钻进被窝&#xff0c;好好地睡一觉&#xff0c;难熬的日子总需要一些温暖&#xff0c;而什么都不如被窝的温暖来的踏实。 冒泡排序是一种经典的排序算法&#xff0c;它通过重复遍历待排序的序…

如何恢复回收站中已删除/清空的文件

回收站清空后如何恢复已删除的文件&#xff1f;是否可以恢复永久删除的文件&#xff1f;或者最糟糕的是&#xff0c;如果文件直接被删除怎么办&#xff1f;本文将向您展示清空回收站后恢复已删除数据的最佳方法。 回收站清空后如何恢复已删除的文件&#xff1f; “回收站清空后…

从零开始搭建GPU深度学习环境(pytorch)

傻乎乎的我&#xff0c;突然发现我自己的笔记本电脑居然有gpu&#xff0c;这个电脑是我弟在2017年购入的。 电脑已经按照了cpu环境&#xff0c;现在增加gpu环境 参考torch的cpu版本和gpu版本有什么区别 torch与cuda版本_mob64ca13f6035c的技术博客_51CTO博客 前言&#xff1a…

Vue3使用Uni-ui的popup弹出层组件

由于uni-ui中有些组件文档的基于vue2编写的&#xff0c;比如popup组件 下面是vue3的写法 除了文档中要求的aleterDialog外&#xff0c;还得利用v-if设置一个isDialog判断 // template // script 解决

数学建模笔记——TOPSIS[优劣解距离]法

数学建模笔记——TOPSIS[优劣解距离法] TOPSIS(优劣解距离)法1. 基本概念2. 模型原理3. 基本步骤4. 典型例题4.1 矩阵正向化4.2 正向矩阵标准化4.3 计算得分并归一化4.4 python代码实现 TOPSIS(优劣解距离)法 1. 基本概念 C. L.Hwang和 K.Yoon于1981年首次提出 TOPSIS(Techni…

【Linux网络】详解TCP协议(1)

&#x1f389;博主首页&#xff1a; 有趣的中国人 &#x1f389;专栏首页&#xff1a; Linux网络 &#x1f389;其它专栏&#xff1a; C初阶 | C进阶 | 初阶数据结构 小伙伴们大家好&#xff0c;本片文章将会讲解 TCP协议 的相关内容。 如果看到最后您觉得这篇文章写得不错&am…

力扣每日一题 有序数组的平方 双指针 逆向思维

Problem: 977. 有序数组的平方 &#x1f468;‍&#x1f3eb; 灵神题解 class Solution {public int[] sortedSquares(int[] nums) {int n nums.length;int [] ans new int[n];int p n-1;int i 0;int j n-1;while(p > 0){int x nums[i] * nums[i];int y nums[j] * n…

结构体小知识

目录 前言1.结构体数组1.1结构体数组理解1.2结构体数组知识运用1.3 -> 操作符 2. 知识拓展 前言 本期blog是对上一期指针知识的知识补充&#xff0c;如果各位大佬感兴趣的话&#xff0c;可以结合起来一起看&#xff01; 1.结构体数组 1.1结构体数组理解 结构体数组在本…

关系的规范化与范式详解

在数据库设计中&#xff0c;关系的规范化是确保数据结构合理性、减少冗余和异常的关键步骤。如果你是一个数据库设计的初学者&#xff0c;这篇文章将为你深入浅出地讲解 关系规范化 和 范式 的核心概念&#xff0c;并通过简洁的示例帮助你加深理解。 关系的规范化&#xff1a;…

JavaScript进阶day1

目录 1.作用域 1.1 局部作用域 1.2 全局作用域 1.3 作用域链 1.4 JS垃圾回收机制 1.4.1 什么是垃圾回收机制&#xff1f; 1.4.2 内存的生命周期 1.4.3 算法说明 1.5 闭包 1.6 变量提升 2.函数进阶 2.1 函数提升 2.2 函数参数 2.2.1 动态参数 2.2.2 剩余参数 2.…

GB2312编码(加2020H、8080H原理)

区位码、内码、国标码 转换及原理 背景答题思考相关资料 背景 问题: 某汉字的国标码为5650H&#xff0c;那么它的机内码为&#xff08; B &#xff09;。A E6E0H B D6D0H C C6C0H D 8080H答题 思考 为什么要加上2020H和8080H&#xff1f;区位码、内码、国标码怎么转换非常简单…

【硬件知识】关于RAM的“那些事”

文章目录 一、DRAM&#xff08;动态随机存取存储器&#xff09;二、SRAM&#xff08;静态随机存取存储器&#xff09;三、DRAM和SRAM的差异与区别 一、DRAM&#xff08;动态随机存取存储器&#xff09; 工作原理&#xff1a;DRAM使用电容来存储数据。每一位数据通过一个电容和…

【深度学习讲解笔记】第1章-机器学习基础

1.机器学习是什么 机器学习&#xff08;Machine Learning&#xff0c;ML&#xff09;&#xff0c;顾名思义就是让机器学会做一件事情&#xff0c;比如语音识别&#xff0c;机器听一段声音&#xff0c;产生这段声音对应的文字。或是识别图片中有几个人&#xff0c;几辆车。这些…

2024年语音识别转文字工具的崛起

无论是繁忙的会议记录、远程教学的即时笔记&#xff0c;还是日常生活的语音备忘&#xff0c;只需轻轻一说&#xff0c;便能瞬间转化为清晰可编辑的文字&#xff0c;这种便捷与高效无疑为现代生活增添了无限可能。本文将带你深入探索语音识别转文字工具的奥秘。 1.365在线转文字…

【Python篇】matplotlib超详细教程-由入门到精通(上篇)

文章目录 第一部分&#xff1a;基础概念与简单绘图1.1 matplotlib 简介1.2 创建第一个折线图1.3 图表的基本组成元素 第二部分&#xff1a;图表样式与修饰2.1 修改图表样式2.2 添加图例2.3 调整坐标轴与刻度 第三部分&#xff1a;绘制不同类型的图表3.1 散点图 (Scatter Plot)3…