kubernetes微服务基础及类型

news2024/12/26 1:57:10

目录

1 什么是微服务

2 微服务的类型

3 ipvs模式

ipvs模式配置方式

4 微服务类型详解

4.1 ClusterIP

4.2 ClusterIP中的特殊模式headless

4.3 nodeport

4.4 metalLB配合loadbalance实现发布IP


1 什么是微服务

用控制器来完成集群的工作负载,那么应用如何暴漏出去?需要通过微服务暴漏出去后才能被访问

  • Service是一组提供相同服务的Pod对外开放的接口。

  • 借助Service,应用可以实现服务发现和负载均衡。

  • service默认只支持4层负载均衡能力,没有7层功能。(可以通过Ingress实现)

2 微服务的类型

微服务类型作用描述
ClusterIP默认值,k8s系统给service自动分配的虚拟IP,只能在集群内部访问
NodePort将Service通过指定的Node上的端口暴露给外部,访问任意一个NodeIP:nodePort都将路由到ClusterIP
LoadBalancer在NodePort的基础上,借助cloud provider创建一个外部的负载均衡器,并将请求转发到 NodeIP:NodePort,此模式只能在云服务器上使用
ExternalName将服务通过 DNS CNAME 记录方式转发到指定的域名(通过 spec.externlName 设定

[root@k8s-master yaml]# kubectl create deployment testpod --image myapp:v1 --replicas 2 --dry-run=client -o yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  creationTimestamp: null
  labels:
    app: testpod
  name: testpod
spec:
  replicas: 2
  selector:
    matchLabels:
      app: testpod
  strategy: {}
  template:
    metadata:
      creationTimestamp: null
      labels:
        app: testpod
    spec:
      containers:
      - image: myapp:v1
        name: myapp
        resources: {}
status: {}

[root@k8s-master yaml]# kubectl create deployment testpod \
--image myapp:v1 --replicas 2 --dry-run=client -o yaml > testpod.yml

# 修改之后的
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: testpod
  name: testpod
spec:
  replicas: 2
  selector:
    matchLabels:
      app: testpod
  template:
    metadata:
      labels:
        app: testpod
    spec:
      containers:
      - image: myapp:v1
        name: myapp

启动并查看状态

[root@k8s-master yaml]# kubectl apply -f testpod.yml 
deployment.apps/testpod created

[root@k8s-master yaml]# kubectl get pods 
NAME                       READY   STATUS    RESTARTS   AGE
testpod-7b864c4646-ds7p8   1/1     Running   0          5s
testpod-7b864c4646-x8lzf   1/1     Running   0          5s

[root@k8s-master yaml]# kubectl get deployments.apps 
NAME      READY   UP-TO-DATE   AVAILABLE   AGE
testpod   2/2     2            2           16s

[root@k8s-master yaml]# kubectl get deployments.apps --show-labels 
NAME      READY   UP-TO-DATE   AVAILABLE   AGE   LABELS
testpod   2/2     2            2           23s   app=testpod

为 testpod 增加服务资源 

[root@k8s-master yaml]# kubectl expose deployment testpod \
--port 80 --dry-run=client -o yaml

apiVersion: v1
kind: Service
metadata:
  creationTimestamp: null
  labels:
    app: testpod
  name: testpod
spec:
  ports:
  - port: 80
    protocol: TCP
    targetPort: 80
  selector:
    app: testpod
status:
  loadBalancer: {}

[root@k8s-master yaml]# kubectl expose deployment testpod \
--port 80 --dry-run=client -o yaml >> testpod.yml 


apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: testpod
  name: testpod
spec:
  replicas: 2
  selector:
    matchLabels:
      app: testpod
  template:
    metadata:
      labels:
        app: testpod
    spec:
      containers:
      - image: myapp:v1
        name: myapp

---
apiVersion: v1
kind: Service
metadata:
  labels:
    app: testpod
  name: testpod
spec:
  ports:
  - port: 80
    protocol: TCP
    targetPort: 80
  selector:
    app: testpod

声明一下控制器并测试

[root@k8s-master yaml]# kubectl apply -f testpod.yml 
deployment.apps/testpod unchanged
service/testpod created


[root@k8s-master yaml]# kubectl get services 
NAME         TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)   AGE
kubernetes   ClusterIP   10.96.0.1       <none>        443/TCP   3d11h
testpod      ClusterIP   10.107.129.69   <none>        80/TCP    6m55s

[root@k8s-master yaml]# curl 10.107.129.69
Hello MyApp | Version: v1 | <a href="hostname.html">Pod Name</a>

[root@k8s-master yaml]# curl 10.107.129.69
Hello MyApp | Version: v1 | <a href="hostname.html">Pod Name</a>

微服务默认使用iptables调度

[root@k8s-master yaml]# kubectl get services --show-labels 
NAME         TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)   AGE     LABELS
kubernetes   ClusterIP   10.96.0.1       <none>        443/TCP   3d11h   component=apiserver,provider=kubernetes
testpod      ClusterIP   10.107.129.69   <none>        80/TCP    14m     app=testpod

[root@k8s-master yaml]# iptables -nL -t nat 

3 ipvs模式

  • Service 是由 kube-proxy 组件,加上 iptables 来共同实现的

  • kube-proxy 通过 iptables 处理 Service 的过程,需要在宿主机上设置相当多的 iptables 规则,如果宿主机有大量的Pod,不断刷新iptables规则,会消耗大量的CPU资源

  • IPVS模式的service,可以使K8s集群支持更多量级的Pod

ipvs模式配置方式

1 在所有节点中安装ipvsadm

[root@k8s-master yaml]# yum install ipvsadm -y

2 设置为ipvs模式

 [root@k8s-master yaml]# kubectl -n kube-system edit cm kube-proxy

 metricsBindAddress: ""
    mode: "ipvs"
    nftables:
      masqueradeAll: false

3 重启pod,在pod运行时配置文件中采用默认配置,当改变配置文件后已经运行的pod状态不会变化,所以要重启pod

以下使用的方法是删掉命名空间中的pod控制器的缘故会重新起一个

[root@k8s-master yaml]# kubectl -n kube-system get pods | \
awk '/proxy/{system("kubectl -n kube-system delete pods " $1)}'

pod "kube-proxy-4fllj" deleted
pod "kube-proxy-6jgd2" deleted
pod "kube-proxy-zkn5x" deleted

# 由于使用的是deployment控制器,删除了之后会再次启动
[root@k8s-master yaml]# kubectl -n kube-system get pods 
NAME                                 READY   STATUS    RESTARTS      AGE
coredns-66d4c695bb-29qbq             1/1     Running   2 (28h ago)   3d11h
coredns-66d4c695bb-6th24             1/1     Running   2 (28h ago)   3d11h
etcd-k8s-master                      1/1     Running   2 (28h ago)   3d11h
kube-apiserver-k8s-master            1/1     Running   2 (28h ago)   3d11h
kube-controller-manager-k8s-master   1/1     Running   2 (28h ago)   3d11h
kube-proxy-4p7ds                     1/1     Running   0             15s
kube-proxy-ggnb6                     1/1     Running   0             14s
kube-proxy-r66fc                     1/1     Running   0             14s
kube-scheduler-k8s-master            1/1     Running   2 (28h ago)   3d11h

# 查看ipvs策略是否加载
[root@k8s-master yaml]# ipvsadm -Ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
  -> RemoteAddress:Port           Forward Weight ActiveConn InActConn
TCP  10.96.0.1:443 rr
  -> 192.168.239.100:6443         Masq    1      0          0         
TCP  10.96.0.10:53 rr
  -> 10.244.0.2:53                Masq    1      0          0         
  -> 10.244.0.3:53                Masq    1      0          0         
TCP  10.96.0.10:9153 rr
  -> 10.244.0.2:9153              Masq    1      0          0         
  -> 10.244.0.3:9153              Masq    1      0          0         
TCP  10.107.129.69:80 rr
  -> 10.244.1.29:80               Masq    1      0          0         
  -> 10.244.2.33:80               Masq    1      0          0         
UDP  10.96.0.10:53 rr
  -> 10.244.0.2:53                Masq    1      0          0         
  -> 10.244.0.3:53                Masq    1      0          0  

在使用ipvs模式之后发现添加了一个网卡专属于ipvs的

[root@k8s-master yaml]# ip a | tail
    inet6 fe80::78a9:7cff:fe93:958a/64 scope link 
       valid_lft forever preferred_lft forever
11: kube-ipvs0: <BROADCAST,NOARP> mtu 1500 qdisc noop state DOWN group default 
    link/ether c6:3e:41:c4:d3:9f brd ff:ff:ff:ff:ff:ff
    inet 10.96.0.1/32 scope global kube-ipvs0
       valid_lft forever preferred_lft forever
    inet 10.107.129.69/32 scope global kube-ipvs0
       valid_lft forever preferred_lft forever
    inet 10.96.0.10/32 scope global kube-ipvs0
       valid_lft forever preferred_lft forever

4 微服务类型详解

4.1 ClusterIP

特点:

clusterip模式只能在集群内访问,并对集群内的pod提供健康检测和自动发现功能

默认值,k8s系统给service自动分配的虚拟IP,只能在集群内部访问

并且在集群内访问是通过域名的方式来访问的

示例:

# 创建一个pod
[root@k8s-master yaml]# kubectl run testpods --image myapp:v1  

# 查看pod 的IP 与标签
[root@k8s-master yaml]# kubectl get pods -o wide --show-labels 
NAME       READY   STATUS    RESTARTS   AGE   IP            NODE        NOMINATED NODE   READINESS GATES   LABELS
testpods   1/1     Running   0          10m   10.244.1.36   k8s-node1   <none>           <none>            run=testpods

# 创建services 的 yaml 文件将刚刚创建的pod对外发布

[root@k8s-master yaml]# kubectl expose pod testpods --port 80 \
--target-port 80 --dry-run=client -o yaml > servise.yml

[root@k8s-master yaml]# vim servise.yml 
# 以下是修改过后的
apiVersion: v1
kind: Service
metadata:
  labels:
    run: testpods
  name: testpods
spec:
  ports:
  - port: 80
    protocol: TCP
    targetPort: 80
  selector:
    run: testpods    # 这里的值必须与pod的标签一致不然就无法对外发布
  type: ClusterIP    # 这里使用ClusterIP,不写也没有关系,因为是默认值

 声明一下

[root@k8s-master yaml]# kubectl apply -f servise.yml 
service/testpods created



[root@k8s-master yaml]# kubectl describe service testpods 
Name:              testpods
Namespace:         default
Labels:            run=testpods
Annotations:       <none>
Selector:          run=testpods
Type:              ClusterIP
IP Family Policy:  SingleStack
IP Families:       IPv4
IP:                10.97.188.175     # 前端IPVS调度IP
IPs:               10.97.188.175
Port:              <unset>  80/TCP
TargetPort:        80/TCP
Endpoints:         10.244.1.36:80    # Endpoints显示的为后端pod的IP
Session Affinity:  None
Events:            <none>


[root@k8s-master yaml]# kubectl get services 
NAME         TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)   AGE
kubernetes   ClusterIP   10.96.0.1       <none>        443/TCP   4d9h
testpods     ClusterIP   10.97.188.175   <none>        80/TCP    2m53s

 为了掩饰标签一致性才能对外发布,以下实验实例

以上面实验为基础,创建一个新的pod 并修改他的标签

[root@k8s-master yaml]# kubectl run testpods1 --image myapp:v2 
pod/testpods1 created

[root@k8s-master yaml]# kubectl get pods --show-labels 
NAME        READY   STATUS    RESTARTS   AGE   LABELS
testpods    1/1     Running   0          27m   run=testpods
testpods1   1/1     Running   0          15s   run=testpods1


[root@k8s-master yaml]# kubectl describe service testpods 
Name:              testpods
Namespace:         default
Labels:            run=testpods
Annotations:       <none>
Selector:          run=testpods
Type:              ClusterIP
IP Family Policy:  SingleStack
IP Families:       IPv4
IP:                10.97.188.175
IPs:               10.97.188.175
Port:              <unset>  80/TCP
TargetPort:        80/TCP
Endpoints:         10.244.1.36:80        # 此时就只有原先的pod
Session Affinity:  None
Events:            <none>

# 将新创建的pod标签修改覆盖 
[root@k8s-master yaml]# kubectl label pods testpods1 run=testpods --overwrite 
pod/testpods1 labeled


# 查看Endpoints的变化
[root@k8s-master yaml]# kubectl describe service testpods 
Name:              testpods
Namespace:         default
Labels:            run=testpods
Annotations:       <none>
Selector:          run=testpods
Type:              ClusterIP
IP Family Policy:  SingleStack
IP Families:       IPv4
IP:                10.97.188.175
IPs:               10.97.188.175
Port:              <unset>  80/TCP
TargetPort:        80/TCP
Endpoints:         10.244.1.36:80,10.244.2.42:80
Session Affinity:  None
Events:            <none>

# 集群内访问他发现是轮循
[root@k8s-master yaml]# curl 10.97.188.175
Hello MyApp | Version: v2 | <a href="hostname.html">Pod Name</a>
[root@k8s-master yaml]# curl 10.97.188.175
Hello MyApp | Version: v1 | <a href="hostname.html">Pod Name</a>
[root@k8s-master yaml]# curl 10.97.188.175
Hello MyApp | Version: v2 | <a href="hostname.html">Pod Name</a>
[root@k8s-master yaml]# curl 10.97.188.175
Hello MyApp | Version: v1 | <a href="hostname.html">Pod Name</a>
[root@k8s-master yaml]# curl 10.97.188.175
Hello MyApp | Version: v2 | <a href="hostname.html">Pod Name</a>

查看集群内DNS服务

[root@k8s-master yaml]# kubectl -n kube-system get service
NAME       TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)                  AGE
kube-dns   ClusterIP   10.96.0.10   <none>        53/UDP,53/TCP,9153/TCP   4d9h

查看testpod 的域名解析是否正常 

[root@k8s-master yaml]# dig testpods.default.svc.cluster.local. @10.96.0.10

; <<>> DiG 9.16.23-RH <<>> testpods.default.svc.cluster.local. @10.96.0.10
;; global options: +cmd
;; Got answer:
;; WARNING: .local is reserved for Multicast DNS
;; You are currently testing what happens when an mDNS query is leaked to DNS
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 59510
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; WARNING: recursion requested but not available

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
; COOKIE: e633e2637dcddbd3 (echoed)
;; QUESTION SECTION:
;testpods.default.svc.cluster.local. IN A

;; ANSWER SECTION:
testpods.default.svc.cluster.local. 8 IN A      10.97.188.175  # 为前端services 的IP

;; Query time: 1 msec
;; SERVER: 10.96.0.10#53(10.96.0.10)
;; WHEN: Sat Sep 07 11:27:16 CST 2024
;; MSG SIZE  rcvd: 125

新建一个容器查看 

[root@k8s-master yaml]# kubectl run busybox -it \
 --image busyboxplus:latest  -- /bin/sh

/ # nslookup testpods
Server:    10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local

Name:      testpods
Address 1: 10.97.188.175 testpods.default.svc.cluster.local

/ # cat /etc/resolv.conf 
nameserver 10.96.0.10
search default.svc.cluster.local svc.cluster.local cluster.local
options ndots:5


/ # curl testpods
Hello MyApp | Version: v2 | <a href="hostname.html">Pod Name</a>
/ # curl testpods
Hello MyApp | Version: v1 | <a href="hostname.html">Pod Name</a>
/ # curl testpods
Hello MyApp | Version: v2 | <a href="hostname.html">Pod Name</a>
/ # curl testpods.default.svc.cluster.local.
Hello MyApp | Version: v1 | <a href="hostname.html">Pod Name</a>
/ # curl testpods.default.svc.cluster.local.
Hello MyApp | Version: v2 | <a href="hostname.html">Pod Name</a>
/ # curl testpods.default.svc.cluster.local.
Hello MyApp | Version: v1 | <a href="hostname.html">Pod Name</a>

4.2 ClusterIP中的特殊模式headless

headless(无头服务)

Headless Services是一种特殊的service,其spec:clusterIP表示为None,这样在实际运行时就不会被分配ClusterIP。也被称为无头服务。

对于无头 Services 并不会分配 Cluster IP,kube-proxy不会处理它们, 而且平台也不会为它们进行负载均衡和路由,集群访问通过dns解析直接指向到业务pod上的IP,所有的调度有dns单独完成

# 可以是控制器
---
apiVersion: v1
kind: Service
metadata:
  name: testpods
  labels:
    run: testpods
spec:
  ports:
  - port: 80
    protocol: TCP
    targetPort: 80
  selector:
    run: testpods
  type: ClusterIP
  clusterIP: None  # 直接设置为 None

[root@k8s-master yaml]# kubectl delete service testpods 
service "testpods" deleted

[root@k8s-master yaml]# kubectl apply -f servise.yml 
service/testpods created

[root@k8s-master yaml]# kubectl get service
NAME         TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)   AGE
kubernetes   ClusterIP   10.96.0.1    <none>        443/TCP   4d20h
testpods     ClusterIP   None         <none>        80/TCP    13s


[root@k8s-master yaml]# kubectl describe service testpods 
Name:              testpods
Namespace:         default
Labels:            run=testpods
Annotations:       <none>
Selector:          run=testpods
Type:              ClusterIP
IP Family Policy:  SingleStack
IP Families:       IPv4
IP:                None            # 没有前端,证明不经过服务直接转到了后端pod
IPs:               None
Port:              <unset>  80/TCP
TargetPort:        80/TCP
Endpoints:         10.244.1.36:80,10.244.2.42:80  
Session Affinity:  None
Events:            <none>

4.3 nodeport

通过ipvs暴漏端口从而使外部主机通过master节点的对外ip:<port>来访问pod业务

其访问过程为:

---
apiVersion: v1
kind: Service
metadata:
  name: testpods
  labels:
    run: testpods
spec:
  ports:
  - port: 80
    protocol: TCP
    targetPort: 80
  selector:
    run: testpods
  type: NodePort

[root@k8s-master yaml]# kubectl delete -f servise.yml
[root@k8s-master yaml]# kubectl apply -f servise.yml 

[root@k8s-master yaml]# kubectl get service
NAME         TYPE           CLUSTER-IP       EXTERNAL-IP       PORT(S)        AGE
kubernetes   ClusterIP      10.96.0.1        <none>            443/TCP        5d
testpods     NodePort       10.111.173.191   <none>            80:30110/TCP   4s


[root@complete ~]# curl 192.168.239.100:30110
Hello MyApp | Version: v1 | <a href="hostname.html">Pod Name</a>
[root@complete ~]# curl 192.168.239.100:30110
Hello MyApp | Version: v2 | <a href="hostname.html">Pod Name</a>
[root@complete ~]# curl 192.168.239.100:30110
Hello MyApp | Version: v1 | <a href="hostname.html">Pod Name</a>
[root@complete ~]# curl 192.168.239.100:30110
Hello MyApp | Version: v2 | <a href="hostname.html">Pod Name</a>

4.4 metalLB配合loadbalance实现发布IP


MetalLB 是一个流行的开源解决方案,用于在 Kubernetes 集群中提供类似于云提供商的 LoadBalancer 类型服务的功能。MetalLB 允许你在没有云提供商的情况下,在物理服务器或私有云环境中分配和管理外部 IP 地址。

# 使用魔法下载镜像
[root@k8s-master loadbanlan]# docker pull quay.io/metallb/speaker:v0.14.8
[root@k8s-master loadbanlan]# docker pull quay.io/metallb/controller:v0.14.8

# 打上标签
[root@k8s-master loadbanlan]# docker tag quay.io/metallb/controller:v0.14.8 reg.shuyan.com/metallb/controller:v0.14.8 
[root@k8s-master loadbanlan]# docker tag quay.io/metallb/speaker:v0.14.8 reg.shuyan.com/metallb/speaker:v0.14.8


# 传到自己的镜像仓库
[root@k8s-master ~]# docker push reg.shuyan.com/metallb/controller:v0.14.8
[root@k8s-master ~]# docker push reg.shuyan.com/metallb/speaker:v0.14.8

下载部署文件 

wget https://raw.githubusercontent.com/metallb/metallb/v0.13.12/config/manifests/metallb-native.yaml

修改下载下来的文件

指定自己的镜像仓库

[root@k8s-master loadbanlan]# vim metallb-native.yaml 
image: metallb/speaker:v0.14.8
image: metallb/controller:v0.14.8

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
  name: first-pool
  namespace: metallb-system
spec:
  addresses:
  - 192.168.239.200-192.168.239.250

---
apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
  name: example
  namespace: metallb-system
spec:
  ipAddressPools:
  - first-pool

在 Kubernetes 中,LoadBalancer 类型的 Service 是一种特殊的 Service,它旨在将集群内部的服务暴露给外部网络。LoadBalancer 类型的 Service 通过使用云提供商或网络负载均衡器将外部流量路由到集群内的后端服务。

[root@k8s-master loadbanlan]# kubectl create deployment load \
--image myapp:v1 --dry-run=client -o yaml

apiVersion: apps/v1
kind: Deployment
metadata:
  creationTimestamp: null
  labels:
    app: load
  name: load
spec:
  replicas: 1
  selector:
    matchLabels:
      app: load
  strategy: {}
  template:
    metadata:
      creationTimestamp: null
      labels:
        app: load
    spec:
      containers:
      - image: myapp:v1
        name: myapp
        resources: {}
status: {}

[root@k8s-master loadbanlan]# kubectl create deployment load \
--image myapp:v1 --dry-run=client -o yaml > load.yml

[root@k8s-master loadbanlan]# kubectl expose deployment load \
--port 80 --target-port 80 --dry-run=client -o yaml

apiVersion: v1
kind: Service
metadata:
  creationTimestamp: null
  labels:
    app: load
  name: load
spec:
  ports:
  - port: 80
    protocol: TCP
    targetPort: 80
  selector:
    app: load
status:
  loadBalancer: {}

[root@k8s-master loadbanlan]# kubectl expose deployment load \
--port 80 --target-port 80 --dry-run=client -o yaml >> load.yml

# 修改之后的
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: load
  name: load
spec:
  replicas: 4
  selector:
    matchLabels:
      app: load
  template:
    metadata:
      labels:
        app: load
    spec:
      containers:
      - image: myapp:v1
        name: myapp
---
apiVersion: v1
kind: Service
metadata:
  labels:
    app: load
  name: load
spec:
  ports:
  - port: 80
    protocol: TCP
    targetPort: 80
  selector:
    app: load
  type: LoadBalancer

声明分配IP的配置文件

[root@k8s-master loadbanlan]# kubectl apply -f configmap.yml 
ipaddresspool.metallb.io/first-pool created
l2advertisement.metallb.io/example created


[root@k8s-master loadbanlan]# kubectl get service
NAME         TYPE           CLUSTER-IP       EXTERNAL-IP       PORT(S)        AGE
kubernetes   ClusterIP      10.96.0.1        <none>            443/TCP        4d23h
load         LoadBalancer   10.105.244.178   192.168.239.200   80:30911/TCP   16m
testpods     ClusterIP      None             <none>            80/TCP         3h13m

不在kubernetes集群中的也能直接访问到

[root@complete ~]# curl 192.168.239.200
Hello MyApp | Version: v1 | <a href="hostname.html">Pod Name</a>

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2115039.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JavaWeb——JavaScript(3/4)-JS对象:BOM、DOM(Window、Location,概念、标准模型、获取元素对象)

目录 BOM 介绍 Window 案例(1) Location DOM 概念 标准模型 获取元素对象 案例(2) 原始代码 完整代码 JS对象 BOM 介绍 概念&#xff1a;Browser Object Model 浏览器对象模型&#xff0c;允许JavaScript与浏览器对话&#xff0c;JavaScript 将浏览器的各个组成部…

git 提交自动带上storyid

公司里的运维团队的产品经理&#xff0c;那老六提出说要在每个提交带上的jira storyid或者bugid&#xff0c;不用他自己弄不顾他人麻烦&#xff0c;真想问候他的xx。不过既然已经成为定局&#xff0c;还是想想有没有其他办法。经一番调研&#xff0c;网上有比较零碎的信息&…

攻防世界--->地穴

前言&#xff1a;学习笔记。 下载 解压 查壳。 64位ida打开。 进入主函数。 很容易得知&#xff0c;这是一个RC4加密。 【 &#xff08;题外话&#xff09; 在reverse中&#xff0c;RC4考点&#xff0c;不会很难。 reverse中RC4关键点就是&#xff0c;抓住异或。 一般解这种…

Open a folder or workspace... (File -> Open Folder)

问题&#xff1a;vscode Open with Live Server 时 显示Open a folder or workspace... (File -> Open Folder)报错 解决&#xff1a;不可以单独打开文件1.html ; 需要在文件夹里打开 像这样

【哈希表】深入理解哈希表

目录 1、哈希表简介2、哈希函数2.1、概念2.2、常用的哈希函数2.2.1、直接定址法2.2.2、除留余数法2.2.3、平方取中法2.2.4、基数转换法 3、哈希冲突3.1、概念3.2、开放地址法【闭散列&#xff1a;key存放到冲突位置的“下一个”空位置】3.3、链地址法【开散列&#xff1a;冲突位…

SAM 2:分割图像和视频中的任何内容

文章目录 摘要1 引言2 相关工作3 任务&#xff1a;可提示视觉分割4 模型5 数据5.1 数据引擎5.2 SA-V数据集 6 零样本实验6.1 视频任务6.1.1 提示视频分割6.1.2 半监督视频对象分割6.1.3 公平性评估 6.2 图像任务 7 与半监督VOS的最新技术的比较8 数据和模型消融8.1 数据消融8.2…

dr 航迹推算 知识介绍

DR&#xff08;Dead Reckoning&#xff09;航迹推算是一种在航海、航空、车辆导航等领域中广泛使用的技术&#xff0c;用于估算物体的位置。DR航迹推算主要通过已知的初始位置和运动参数&#xff08;如速度、方向&#xff09;来预测物体的当前位置。以下是 DR 航迹推算的详细知…

跨平台电商数据整合:item_get API在电商大数据平台中的角色

在电商行业蓬勃发展的今天&#xff0c;跨平台运营已成为众多商家的必然选择。然而&#xff0c;随之而来的数据孤岛问题却成为了制约电商企业进一步发展的瓶颈。为了解决这一问题&#xff0c;电商大数据平台应运而生&#xff0c;而item_get API作为获取商品详情的关键接口&#…

统计学第6天

1、变量间关系的度量 函数关系 &#xff08;1&#xff09;是一一对应的确定关系&#xff1b; &#xff08;2&#xff09;设有两个变量x和y&#xff0c;变量y随x一起变化&#xff0c;并完全依赖于x,当x取某个数值时&#xff0c;y根据确定的关系取相应的值&#xff0c;称y是x的…

建设网盘聚合中心—Win10+Alist+RaiDrive

经常需要在网上找各种资源&#xff0c;但遇到 2 个问题&#xff1a; 1. 大部分网盘都需要先将文件保存在自己网盘后才能下载&#xff0c;也就是必须创建对应网盘账号。 2. 有些网盘还必须要下载客户端才能下载文件。 创建账号无法避免&#xff0c;但可以不用下载那么多的客户端…

写在 Pencils Protocol TGE 前:加密市场共识才是王道,拥抱社区

“Pencils Protocol 正在成为本轮市场周期中&#xff0c;加密项目建立共识最有力的工具&#xff01;” 对于加密项目而言&#xff0c;代币 TGE 是一个非常重要的事情&#xff0c;它不仅仅意味着生态内经济系统的全面启动&#xff0c;同时也意味着项目生态市场的全面开启。当然…

《Rust避坑式入门》第1章:挖数据竞争大坑的滥用可变性

赵可菲是一名Java程序员&#xff0c;一直在维护一个有十多年历史的老旧系统。这个系统即将被淘汰&#xff0c;代码质量也很差&#xff0c;每次上线都会出现很多bug&#xff0c;她不得不加班修复。公司给了她3个月的内部转岗期&#xff0c;如果转不出去就会被裁员。她得知公司可…

AF透明模式/虚拟网线模式组网部署

透明模式组网 实验拓扑 防火墙基本配置 接口配置 eth1 eth3 放通策略 1. 内网用户上班时间&#xff08;9:00-17:00&#xff09;不允许看视频、玩游戏及网上购物&#xff0c;其余时 间访问互联网不受限制&#xff1b;&#xff08;20 分&#xff09; 应用控制策略 2. 互联…

二维空间向量的p范数等密度轨迹

图2-52&#xff1a;二维空间向量的 ℓ p \ell p ℓp范数等密度轨迹。 想过两种方式&#xff0c;还是放在一起省地方。 禹晶、肖创柏、廖庆敏《数字图像处理&#xff08;面向新工科的电工电子信息基础课程系列教材&#xff09;》 禹晶、肖创柏、廖庆敏《数字图像处理》资源…

数据库系统原理及应用——仓库管理系统

目录 引言 一.需求设计说明书 1&#xff0e;需求分析 2.系统背景 3.系统目标 4.人员分配 5.数据流程图&#xff08;DFD&#xff09; 二.概念结构设计 1.局部E-R图 &#xff08;1&#xff09;供应商 &#xff08;2&#xff09;货物 &#xff08;3&#xff09;客户 &…

1-19 平滑处理——双边滤波 opencv树莓派4B 入门系列笔记

目录 一、提前准备 二、代码详解 cv2.bilateralFilter函数用于对图像进行双边滤波。双边滤波是一种保持边缘的平滑技术&#xff0c;常用于图像去噪声和增强图像的细节。函数的四个参数如下&#xff1a; 三、运行现象 四、完整工程贴出 一、提前准备 1、树莓派4B 及 64位系统…

stack smashing detect以及解决之道

0. 简介 相较于其他报错&#xff0c;stack smashing detect这个报错是最令人头疼的段错误种类。“Stack smashing detect” 是指在程序运行过程中检测到栈溢出的情况。栈溢出是一种常见的安全漏洞&#xff0c;发生在程序尝试往栈空间写入超过其边界范围的数据时。 1. 常见分类…

改写二进制文件

以下是一些常见的方法和工具&#xff1a; 1. 使用十六进制编辑器 十六进制编辑器 是最直接的工具之一&#xff0c;用于查看和编辑二进制文件中的数据。它允许你以十六进制格式查看和修改文件内容。 常见十六进制编辑器&#xff1a; HxD&#xff08;Windows&#xff09;Hex F…

铁路订票系统小程序的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;管理员管理&#xff0c;车次信息管理&#xff0c;基础数据管理&#xff0c;论坛管理&#xff0c;通知公告管理&#xff0c;用户管理&#xff0c;轮播图信息 微信端账号功能包括&#xff1a;系统首页&a…

【linux学习指南】Linux编译器 gcc和g++使用

文章目录 &#x1f4dd;前言&#x1f320; gcc如何完成&#x1f309;预处理(进行宏替换) &#x1f320;编译&#xff08;生成汇编&#xff09;&#x1f309;汇编&#xff08;生成机器可识别代码&#xff09; &#x1f320;链接&#xff08;生成可执行文件或库文件&#xff09;&…