基于YOLO8的图片实例分割系统

news2025/1/10 11:19:36

文章目录

  • 在线体验
  • 快速开始
  • 一、项目介绍篇
    • 1.1 YOLO8
    • 1.2 ultralytics
    • 1.3 模块介绍
      • 1.3.1 scan_task
      • 1.3.2 scan_taskflow.py
      • 1.3.3 segment_app.py
  • 二、核心代码介绍篇
    • 2.1 segment_app.py
    • 2.2 scan_taskflow.py
  • 三、结语

代码资源:计算机视觉领域YOLO8技术的图片实例分割实现

在线体验

  • 基于YOLO8的图片实例分割系统
    在这里插入图片描述

在这里插入图片描述

  • 基于opencv的摄像头实时图片实例分割
    在这里插入图片描述

快速开始

  1. 创建anaconda环境
conda create -n XXX python=3.10
  1. pytorch安装
# 查看cuda版本(示例为:11.8)
nvcc -V

在这里插入图片描述

# 安装对应版本的pytorch
# 官网:https://pytorch.org/

# pip安装
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

# conda安装,建议配置conda国内镜像源
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

在这里插入图片描述

  1. 其他依赖包安装
pip install -r ./requirements-segment.txt
  1. 网页界面如下,可在示例图片中快速进行试验
python segment_app.py

在这里插入图片描述

一、项目介绍篇

在深度学习和计算机视觉的交汇点上,YOLO8以其创新的架构和优化的性能,成为了图像实例分割领域的佼佼者。本项目依托于YOLO8算法,开发了一个先进、用户友好的图像实例分割平台,致力于为客户提供一个高效且易于集成的解决方案。通过直观的操作界面和强大的功能集合,用户可以便捷地执行图像实例分割任务,无论是在云平台还是个人设备上。

1.1 YOLO8

  • YOLO8是最新的图像实例分割算法,延续了YOLO(You Only Look Once)系列的创新精神。它不仅继承了YOLO系列算法的速度和效率,还通过一系列创新性的改进,使其能够处理更加复杂的实例分割任务。YOLO8通过引入先进的网络架构和训练技术,显著提升了分割的精确度和稳定性,特别是在处理小物体和重叠物体时表现出色。
  • YOLO8算法的主要创新点包括:
    1. 先进的网络架构:YOLO8采用了更复杂的网络结构,通过增加网络深度和宽度,增强了对图像特征的捕捉能力,从而更准确地进行实例分割。
    2. 精细化的锚框系统:YOLO8对锚框机制进行了精细化调整,使其能够更灵活地适应各种尺寸和形状的物体,有效降低了分割错误。
    3. 创新的数据增强策略:通过采用一系列创新的数据增强技术,YOLO8提升了模型对多样化场景的适应性,增强了其在不同环境下的表现。
    4. 高效的训练流程:YOLO8引入了优化的损失函数和训练算法,不仅加快了训练过程,还确保了模型在实例分割任务上的高性能。
  • YOLO8的这些创新使其在需要实时处理的领域,如医疗影像分析、工业自动化检测等,展现出巨大的应用潜力。尽管YOLO8的完整细节和性能数据还未完全公开,但其在图像实例分割领域的突破已经吸引了学术界和工业界的广泛关注。

1.2 ultralytics

  • Ultralytics是一家专注于计算机视觉和人工智能技术的公司,以其开发的高性能目标检测模型YOLO(You Only Look Once)而闻名。YOLO模型以其快速和准确的目标检测能力在业界获得了广泛认可,特别是在需要实时处理的场合,如视频监控、自动驾驶和工业自动化等领域。
  • Ultralytics的YOLO算法通过单次前向传播即可预测图像中的物体位置和类别,与传统的多步骤检测方法相比,大大提高了检测速度。随着YOLO算法的迭代发展,Ultralytics不断推出新版本,如YOLOv3、YOLOv4、YOLOv5等,每个版本都在准确性、速度和易用性方面进行了优化。
  • 除了目标检测,Ultralytics还提供其他AI解决方案,包括图像分割、数据标注工具和模型部署服务。公司致力于推动AI技术的创新和应用,帮助企业实现智能化转型。Ultralytics的技术和产品因其高效性和可靠性,在全球范围内拥有众多用户和合作伙伴。

1.3 模块介绍

在这里插入图片描述

1.3.1 scan_task

  • 构建了执行的任务,用于为scan_taskflow提供可执行对象

1.3.2 scan_taskflow.py

  • 基于open-cv2的本地界面系统

1.3.3 segment_app.py

  • gradio页面代码

二、核心代码介绍篇

2.1 segment_app.py

import cv2
import gradio as gr
from scan_task import ScanSegment

scan_model = ScanSegment(version='YOLOv8n', use_gpu=False)


def segment_scan(frame, show_box, box_color, text_color, text_size=50, y_pos=0):
    '''
    show_box: 是否显示检测框
    box_color: 检测框颜色 默认:(0, 255, 0)
    text_color: 显示文字颜色 默认:(0, 0, 255)
    text_size: 显示文字大小 默认:20
    y_pos: y轴位置偏移量 默认:0
    '''
    # 将 16进制 颜色表示式转换为 RGB 格式
    # 将 16进制 颜色表示式转换为 RGB 格式
    box_color = tuple(int(box_color[i:i + 2], 16) for i in (1, 3, 5))
    text_color = tuple(int(text_color[i:i + 2], 16) for i in (5, 3, 1))
    frame, _ = scan_model.run(frame, show_box=show_box, box_color=box_color,
                              text_color=text_color, text_size=text_size, y_pos=y_pos)
    return frame


def show_box_change(show_box):
    if show_box:
        return gr.update(visible=True)
    else:
        return gr.update(visible=False)


if __name__ == '__main__':
    examples = [
        [cv2.imread('./examples/image_detection.jpg')]]
    with gr.Blocks() as demo:
        with gr.Tabs():
            # 图片分割
            with gr.Tab(label='图片实例分割') as tab1:
                gr.Markdown(value="# 图片实例分割")
                with gr.Row(variant="panel"):
                    with gr.Column():
                        img_input1 = gr.Image(label="上传图片输入", mirror_webcam=False)
                        show_box = gr.Checkbox(label="显示检测框", value=False)
                        with gr.Row(visible=False, variant="panel") as box_config:
                            box_color = gr.ColorPicker(label="检测框颜色", value='#00FF00')
                            text_color = gr.ColorPicker(label="检测文字颜色", value='#FF0000')
                            text_size = gr.Slider(20, 50, value=20, step=1, label="检测框文字大小")
                            y_pos = gr.Slider(-50, 50, value=0, step=1, label="检测框文字偏移量")
                        with gr.Row(variant="panel"):
                            submit_bn1 = gr.Button(value='上传')
                            clear_bn1 = gr.ClearButton(value='清除')
                    img_out1 = gr.Image(label="图片实例分割输出", mirror_webcam=False)

                # 添加演示用例
                gr.Examples(label='上传示例图片', examples=examples, fn=segment_scan,
                            inputs=[img_input1, show_box, box_color, text_color, text_size, y_pos],
                            outputs=img_out1,
                            cache_examples=False)
            # 检测框展示开关
            show_box.change(fn=show_box_change, inputs=show_box, outputs=box_config)
            # 上传图片分割
            submit_bn1.click(fn=segment_scan, inputs=[img_input1, show_box, box_color, text_color, text_size, y_pos],
                             outputs=img_out1)
            # 清除图片
            clear_bn1.add([img_input1, img_out1])

            # 摄像头实时目标检测
            with gr.Tab(label='摄像头实时图片实例分割') as tab3:
                gr.Markdown(value="# 摄像头实时图片实例分割")
                with gr.Column(variant='panel') as demo_scan:
                    with gr.Row(variant="panel"):
                        img_input3 = gr.Image(label="实时输入", sources=["webcam"],
                                              mirror_webcam=False, streaming=True)
                        img_out3 = gr.Image(label="图片实例分割输出", sources=["webcam"],
                                            mirror_webcam=False, streaming=True)
            img_input3.stream(fn=segment_scan, inputs=[img_input3, show_box, box_color, text_color, text_size, y_pos],
                              outputs=img_out3)

    demo.launch()

  1. 此段代码主要是用于生成前端页面,以及配置按钮点击事件触发时的回调函数
  2. 可配置参数包括:use_gputext_colortext_sizey_pos
    1. use_gpu: 是否使用gpu
    2. box_color:检测框颜色
    3. text_color:检测文字颜色 默认:(0, 0, 255)
    4. text_size:检测文字大小 默认:20
    5. y_pos:y轴位置偏移量 默认:0

2.2 scan_taskflow.py

class ScanTaskflow:
    def __init__(self, task: str, video_index=0, win_name='Scan XXX', win_width=800, win_height=600, **kwargs):
        ..初始化摄像头扫描对象,设置窗口尺寸等属性..

    def run(self, **kwargs):
        ..开启摄像头,进行检测任务..


if __name__ == '__main__':
    # 启动默认的图像实例分割
    scanTaskflow = ScanTaskflow(task='scan_segment',
                                version='YOLOv8n', use_gpu=True,
                                video_index=0, win_name='segment',
                                win_width=640, win_height=480)
    scanTaskflow.run(text_color=(0, 255, 0), y_pos=0)

  1. __init__ 用于预加载项目所需模型
  2. run 是检测系统的核心方法,用于将视频的实时帧进行实例分割

三、结语

  • 本项目提供了一个基于YOLO8算法的图片实例分割系统,它不仅易于部署和使用,而且具备高性能和高灵活性。我们相信,随着技术的不断进步和社区的积极参与,本项目将能够为更多用户提供价值,推动图片实例分割技术的发展。如果您在使用过程中遇到任何问题,欢迎在ModelScope创空间-基于YOLO8的图片实例分割系统上提出issue,我们会及时为您解答。
  • 希望本项目能够成为您在图片实例分割领域的得力助手。如果您觉得本项目对您有帮助,请给项目点个star,并持续关注我的个人主页ModelBulider的个人主页

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2113774.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

0x05 tomcat AJP文件包含漏洞(CVE-2020-1938)复现(脚本最终没有验证成功)

参考: 13-3 tomcat AJP文件包含漏洞(CVE-2020-1938)_omcat ajp文件包含漏洞 payload-CSDN博客 一、fofa 搜索使用该服务器的网站 网络空间测绘,网络空间安全搜索引擎,网络空间搜索引擎,安全态势感知 - F…

linux编译器——gcc/g++

1.gcc linux上先要安装, sudo yum install gcc gcc --version 可以查看当前的版本 ,我们默认安装的是4.8.5的版本,比较低, gcc test.c -stdc99 可以使他支持更高版本的c标准 -o 可以殖指明生成文件的名字,可以自己…

什么是Web服务器集群?

Web服务器集群是指将多台服务器组成一个集群,通过负载均衡将客户端请求分发到这些服务器上进行处理,从而提高网站的性能和可用性。每台服务器都运行着相同的应用程序和数据,并且能够相互通信和协调工作。 1.为什么需要Web服务器集群 随着互联…

0基础学习爬虫系列:网页内容爬取

1.背景 今天我们来实现,监控网站最新数据爬虫。 在信息爆炸的年代,能够有一个爬虫帮你,将你感兴趣的最新消息推送给你,能够帮你节约非常多时间,同时确保不会miss重要信息。 爬虫应用场景: 应用场景主要功…

Transformer从零详细解读

Transformer从零详细解读 一、从全局角度概况Transformer ​ 我们把TRM想象为一个黑盒,我们的任务是一个翻译任务,那么我们的输入是中文的“我爱你”,输入经过TRM得到的结果为英文的“I LOVE YOU” ​ 接下来我们对TRM进行细化,…

【Linux】萌新看过来!一篇文章带你走进Linux世界

🚀个人主页:奋斗的小羊 🚀所属专栏:Linux 很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~ 目录 前言💥1、初识Linux💥1.1 什么是操作系统?💥1.2 各种操作…

分享一个基于微信小程序的医院挂号就诊一体化平台uniapp医院辅助挂号应用小程序设计(源码、调试、LW、开题、PPT)

💕💕作者:计算机源码社 💕💕个人简介:本人 八年开发经验,擅长Java、Python、PHP、.NET、Node.js、Android、微信小程序、爬虫、大数据、机器学习等,大家有这一块的问题可以一起交流&…

SpringBoot学习(9)(springboot自动配置原理)(源码分析、面试题)

目录 一、引言 二、为啥学习自动配置原理? 三、自动配置 (1)基本概述 (2)学习回顾 四、自动配置——源码分析 (1)回顾学习 (2)回到源码学习 (1)注…

文件系统 文件描述符fd 重定向原理 缓冲区

文章目录 基础的文件操作文件的系统调用接口位图向文件中写入标记位选项总结&#xff1a;open的返回值文件描述符fdfd012与硬件的关系read && stat 重定向dup2 缓冲区的理解经典的例子 基础的文件操作 引子&#xff1a; #include <stdio.h>int main() {FILE* f…

[Linux]:环境变量与进程地址空间

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ &#x1f388;&#x1f388;养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; 所属专栏&#xff1a;Linux学习 贝蒂的主页&#xff1a;Betty’s blog 1. 环境变量 1.1 概念 **环境变量(environment variables)**一般是指在操作…

在Unity环境中使用UTF-8编码

为什么要讨论这个问题 为了避免乱码和更好的跨平台 我刚开始开发时是使用VS开发,Unity自身默认使用UTF-8 without BOM格式,但是在Unity中创建一个脚本,使用VS打开,VS自身默认使用GB2312(它应该是对应了你电脑的window版本默认选取了国标编码,或者是因为一些其他的原因)读取脚本…

自己部门日均1000+告警?如何减少90%无效告警?

目录标题 一、告警的类别1.技术告警1.1基础设施告警1.2基本服务告警 2.业务告警3.监控大盘告警 二、为何需要告警治理&#xff1f;三、治理迫在眉睫1.1告警治理策略1.2核心监控告警点1.3避免告警反模式1.4告警规约制定1.5自动化处理 一、告警的类别 一般的告警分为以下几点&am…

ISP面试准备2

系列文章目录 文章目录 系列文章目录前言一.如何评价图像质量&#xff1f;二.引起图像噪声的原因三. ISP3.1 ISP Pipeline主要模块3.1.1坏点校正&#xff08;Defect Pixel Correction, DPC&#xff09;3.1.2黑电平校正&#xff08;Black Level Correction, BLC&#xff09;3.1.…

面试官:synchronized的锁升级过程是怎样的?

大家好&#xff0c;我是大明哥&#xff0c;一个专注「死磕 Java」系列创作的硬核程序员。 回答 在 JDK 1.6之前&#xff0c;synchronized 是一个重量级、效率比较低下的锁&#xff0c;但是在JDK 1.6后&#xff0c;JVM 为了提高锁的获取与释放效&#xff0c;,对 synchronized 进…

基于JSP的实验室管理系统

你好呀&#xff0c;我是计算机学姐码农小野&#xff01;如果有相关需求&#xff0c;可以私信联系我。 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;JSP技术 Spring Boot框架 工具&#xff1a;IDEA/Eclipse、Navicat、Tomcat 系统展示 首页 用户个…

自然语言处理系列六十二》神经网络算法》MLP多层感知机算法

注&#xff1a;此文章内容均节选自充电了么创始人&#xff0c;CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》&#xff08;人工智能科学与技术丛书&#xff09;【陈敬雷编著】【清华大学出版社】 文章目录 自然语言处理系列六十二神经网络算法》MLP多层感知机算法CNN卷积…

【Python篇】PyQt5 超详细教程——由入门到精通(序篇)

文章目录 PyQt5 超详细入门级教程前言序篇&#xff1a;1-3部分&#xff1a;PyQt5基础与常用控件第1部分&#xff1a;初识 PyQt5 和安装1.1 什么是 PyQt5&#xff1f;1.2 在 PyCharm 中安装 PyQt51.3 在 PyCharm 中编写第一个 PyQt5 应用程序1.4 代码详细解释1.5 在 PyCharm 中运…

电子电气架构---私有总线通信和诊断规则

电子电气架构—私有总线通信和诊断规则 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自…

最新版 | SpringBoot3如何自定义starter(面试常考)

文章目录 一、自定义starter介绍二、自定义Starter的好处及优势三、自定义starter应用场景四、自定义starter1、创建autoconfigure的maven工程2、创建starter的maven工程3、在autoconfigure的pom文件中引入MyBatis的所需依赖4、编写自动配置类MyBatisAutoConfiguration5、编写i…

红旗EQM换电连接器哪家生产

红旗EQM换电连接器概述 红旗EQM换电连接器是针对红旗品牌电动汽车设计的一种快速更换电池的装置。它允许用户在短时间内完成电池的更换&#xff0c;从而提高电动车的使用效率和便捷性。接下来&#xff0c;我们将详细探讨红旗EQM换电连接器的相关操作步骤、所需工具以及最新的相…