C++---由优先级队列认识仿函数

news2024/11/15 7:00:57

文章目录

一、优先级队列是什么?

二、如何使用优先级队列

1、优先级队列容器用法

2、为什么容器本身无序?

三、什么是仿函数?

1. 什么是仿函数?

2. 仿函数的优势

四、仿函数如何使用?

1、重载operator()函数

2、运用第三个参数模板

3、大小堆切换 

大堆测试代码:

小堆测试代码:

4、头文件总代码 

五、什么是容器适配器?


前言

  本文主要介绍了优先级队列是什么,如何使用优先级队列,并且由优先级队列引出仿函数,从中认识仿函数,最后了解一下什么是适配器。


一、优先级队列是什么?

1. 优先队列是一种容器适配器,根据严格的弱排序标准,它的第一个元素总是它所包含的元素中最大的。

2. 此上下文类似于堆,在堆中可以随时插入元素,并且只能检索最大堆元素(优先队列中位于顶部的元 素)。

3. 优先队列被实现为容器适配器,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特 定的成员函数来访问其元素。元素从特定容器的“尾部”弹出,其称为优先队列的顶部。

4. 底层容器可以是任何标准容器类模板,也可以是其他特定设计的容器类。容器应该可以通过随机访问迭代器访问,并支持以下操作:

  • empty():检测容器是否为空
  • size():返回容器中有效元素个数
  • front():返回容器中第一个元素的引用
  • push_back():在容器尾部插入元素
  • pop_back():删除容器尾部元素

5. 标准容器类vector和deque都满足这些需求。默认情况下,如果没有为特定的priority_queue类实例化指定容器类,则使用vector。

6. 需要支持随机访问迭代器,以便始终在内部保持堆结构。容器适配器通过在需要时自动调用算法函数 make_heap、push_heap和pop_heap来自动完成此操作。

二、如何使用优先级队列

1、优先级队列容器用法

我们从cplusplus网站中看一些优先级队列的结构:

  优先级队列默认使用vector作为其底层存储数据的容器,在vector上又使用了堆算法将vector中元素构造成 堆的结构,因此priority_queue就是堆所有需要用到堆的位置,都可以考虑使用priority_queue。注意: 默认情况下priority_queue是大堆。

  我们用一段代码来带大家初步认识:

#include <vector>
#include <queue>
#include <functional> // greater算法的头文件
void TestPriorityQueue()
{
 // 默认情况下,创建的是大堆,其底层按照小于号比较
 vector<int> v{3,2,7,6,0,4,1,9,8,5};
 priority_queue<int> q1;
 for (auto& e : v)
 q1.push(e);
 cout << q1.top() << endl;
 // 如果要创建小堆,将第三个模板参数换成greater比较方式
 priority_queue<int, vector<int>, greater<int>> q2(v.begin(), v.end());
 cout << q2.top() << endl;
}

  这段代码打印的结果是堆顶的数据,如果是大堆,那么堆顶就是最大的,反之堆顶的数据就是最小的。

打印结果:

  打印第一行就是默认大堆的结果,第二行是我们增加了参数模板改成了小堆。

  我们看到这里第一想法就是,可以用优先级队列来排序,是的没错,但是你将容器中的数打印出来却发现并不是有序的,只是符合了大堆的性质

2、为什么容器本身无序?

  我们都知道了他是大堆,每次取出顶部元素之后删除顶部元素再进行向下调整取出第二个最大元素,所以我们就知道,有序的不是容器本身,而是我们从堆顶依次取出的数据。

  我们用默认大堆,将堆顶的数据依次取出查看顺序结果:

while (!q1.empty())
{
	cout << q1.top() << " ";
	q1.pop();
}
cout << endl;

三、什么是仿函数?

 在我们上面优先级队列使用时,我们想将默认大堆改成小堆,因此我们添加了额外的两个参数模板,其中控制大小堆变化的就是第三个参数greater<int>

  在C++中,仿函数或函数对象是通过重载operator()的类实例来模拟函数行为的对象。这种特性使得C++的对象可以像函数一样被调用,从而为编程提供了极大的灵活性和强大的功能。

1. 什么是仿函数?

仿函数是一个类,它定义了一个或多个operator()成员函数,使得其对象可以像普通函数那样被调用。仿函数通常用于以下场景:

  • 作为算法的比较函数
  • 作为算法的操作函数
  • 存储状态或属性,使行为可定制

2. 仿函数的优势

与普通函数和函数指针相比,仿函数具有以下优势:

  • 状态维护:仿函数可以持有状态,每次调用可以根据状态改变行为。
  • 内联调用:由于仿函数是通过对象调用的,编译器可以轻易地将其内联,减少调用开销。
  • 高度定制:可以通过对象的属性来调整其行为。

四、仿函数如何使用?

我们通过对优先级队列的实现,写出一个可以作为比较函数的仿函数

我们先在头文件中写出默认大堆的代码,实现优先级队列的几个功能:

代码如下:

#pragma once
#include<queue>
#include<vector>
#include<algorithm>
	
using namespace std;
namespace bit
{
	template<class T, class Container = vector<T>>
	class priority_queue
	{
	public:
		void adjust_up(size_t child)
		{
			size_t parent = (child - 1) / 2;
			while (child > 0)
			{
				if (_con[parent]< _con[child])
				{
					swap(_con[child], _con[parent]);
					child = parent;
					parent = (child - 1) / 2;
				}
				else
				{
					break;
				}
			}
		}
		void adjust_down(size_t parent)
		{
			size_t child = parent * 2 + 1;
			while (child < _con.size())
			{
				if ( child + 1 < _con.size()&& _con[child]< _con[child + 1])
				{
					child++;
				}
				if (_con[parent]<_con[child])
				{
					swap(_con[parent], _con[child]);
					parent = child;
					child = parent * 2 + 1;
				}
				else
				{
					break;
				}
			}

		}
		void push(const T& x)
		{
			_con.push_back(x);
			adjust_up(_con.size() - 1);
		}
		void pop()
		{
			swap(_con[0], _con[_con.size() - 1]);
			_con.pop_back();
			adjust_down(0);
		}
		bool empty()
		{
			return _con.empty();
		}
		const T& top()
		{
			return _con[0];
		}
		size_t size()
		{
			return _con.size();
		}
	private:
		Container _con;

	};
}

我们这个是默认大堆的,创建对象之后,每次取出堆顶的数据只会是最大了那个数据,因为我们在向上调整或者向下调整时,全都是大堆的比较方法,所以我们只能用大堆。

那我们应该如何切换小堆呢?

1、重载operator()函数

我们重载operator()函数使其成为一个可以被调用的可以比较大小的函数

代码如下:

	template<class T>
	class less
	{
	public:
		bool operator()(const T& x, const T& y)
		{
			return x < y;
		}
	};
	template<class T>
	class greater
	{
	public:
		bool operator()(const T& x, const T& y)
		{
			return x > y;
		}
	};

在这两个比较函数中,less就是大堆的比较方法,而greater就是小堆的比较方法 

2、运用第三个参数模板

我们知道,我们所写的operator()函数是在里面,所以这个类就可以作为一个类模板去使用 

我们在第三个参数模板中写一个比较模板,用来切换在向上调整或者向下调整中的比较方法,进而去切换大小堆

模板代码:

template<class T, class Container = vector<T>,class Compare=less<T>>

我们将第三个模板命名为Compare ,后面调用less类的比较方法,在默认情况下仍是大堆。

接下来,我们可以把向上调整或者向下调整中的比较方法修改成我们的仿函数。

先创建Compare对象

Compare com;

接下来开始替换(向上调整举例): 

void adjust_up(size_t child)
{
	Compare com;
	size_t parent = (child - 1) / 2;
	while (child > 0)
	{
		if (com(_con[parent], _con[child]))
		{
			swap(_con[child], _con[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}

我们可以看到,我们在if判断语句中的比较已经改成了我们的仿函数。

3、大小堆切换 

当我们想要从大堆切换小堆时,我们直接改变第三个参数模板的底层类就可以了,将less<T>修改成greater<T>即可(头文件和源文件的模板都要修改)

template<class T, class Container = vector<T>,class Compare=greater<T>>

我们进行一下测试:

大堆测试代码:

void Test_priority_queue()
{
	bit::priority_queue<int,vector<int>,less<int>> pq;
	pq.push(2);
	pq.push(7);
	pq.push(1);
	pq.push(8);
	while (!pq.empty())
	{	
		cout << pq.top() << " ";
		pq.pop();
	}
	cout << endl;
}
int main()
{
	Test_priority_queue();
	return 0;
}	

打印结果:

小堆测试代码:

void Test_priority_queue()
{
	bit::priority_queue<int,vector<int>,greater<int>> pq;
	pq.push(2);
	pq.push(7);
	pq.push(1);
	pq.push(8);
	while (!pq.empty())
	{	
		cout << pq.top() << " ";
		pq.pop();
	}
	cout << endl;
}
int main()
{
	Test_priority_queue();
	return 0;
}	

打印结果: 

 

4、头文件总代码 

#pragma once
#include<queue>
#include<vector>
#include<algorithm>
	
using namespace std;
namespace bit
{
	//仿函数,切换大堆小堆,仿函数作为一个类型,可以作为类模板使用
	template<class T>
	class less
	{
	public:
		bool operator()(const T& x, const T& y)
		{
			return x < y;
		}
	};
	template<class T>
	class greater
	{
	public:
		bool operator()(const T& x, const T& y)
		{
			return x > y;
		}
	};
	template<class T, class Container = vector<T>,class Compare=greater<T>>
	class priority_queue
	{
	public:
		void adjust_up(size_t child)
		{
			Compare com;
			size_t parent = (child - 1) / 2;
			while (child > 0)
			{
				if (com(_con[parent], _con[child]))
				{
					swap(_con[child], _con[parent]);
					child = parent;
					parent = (child - 1) / 2;
				}
				else
				{
					break;
				}
			}
		}
		void adjust_down(size_t parent)
		{
			Compare com;
			size_t child = parent * 2 + 1;
			while (child < _con.size())
			{
				if ( child + 1 < _con.size()&& com(_con[child], _con[child + 1]))
				{
					child++;
				}
				if (com(_con[parent], _con[child]))
				{
					swap(_con[parent], _con[child]);
					parent = child;
					child = parent * 2 + 1;
				}
				else
				{
					break;
				}
			}

		}
		void push(const T& x)
		{
			_con.push_back(x);
			adjust_up(_con.size() - 1);
		}
		void pop()
		{
			swap(_con[0], _con[_con.size() - 1]);
			_con.pop_back();
			adjust_down(0);
		}
		bool empty()
		{
			return _con.empty();
		}
		const T& top()
		{
			return _con[0];
		}
		size_t size()
		{
			return _con.size();
		}
	private:
		Container _con;

	};
}

五、什么是容器适配器?

  适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总结),该种模式是将一个类的接口转换成客户希望的另外一个接口

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2111534.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

分支管理

目录 创建分支 切换分支 合并分支 删除分支 合并冲突 创建分支 git branch [分支]指令 创建新的分⽀后&#xff0c;Git 新建了⼀个指针叫dev&#xff0c; * 表⽰当前 HEAD 指向的分⽀是 master 分⽀。另外&#xff0c;可以通过⽬录结构发现&#xff0c;新的 dev 分⽀…

s3c2440---ADC模数转换器

目录 一、模数转换器简述 1.1.简述 1.2.转换过程 ​编辑 1.3. ADC类别 二、普通ADC转换的实现 2.1.设置ADC控制寄存器 2.2. 读取ADC转换数据寄存器 三、总结 一、模数转换器简述 1.1.简述 S3c2440有一个10-bit的CMOS ADC 模数转换器&#xff0c;支持8个模拟通道输…

像素间的关系(邻接、连通、区域、边界、距离定义)

文章目录 像素的相邻像素4邻域D邻域8邻域 邻接、连通、区域和边界邻接类型连通区域边界 距离测度欧氏距离城市街区距离&#xff08;city-block distance&#xff09;棋盘距离&#xff08;chessboard distance&#xff09; 参考 像素的相邻像素 4邻域 坐标 ( x , y ) (x,y) (x…

kali 2024 安装SageMath

kali2024安装sagemath避坑指南 安装遇到的问题Install from conda-forge使用mamba安装sage 安装遇到的问题 刚开始使用sudo apt -y install sagemath和源码安装遇到各种包冲突&#xff0c;有的还涉及到系统底层包&#xff0c;没有避开。然后尝试使用mamba安装成功&#xff0c;…

93. UE5 GAS RPG 应用负面效果表现

在上一篇文章里&#xff0c;我们实现了添加负面效果GE&#xff0c;并且在添加GE时&#xff0c;也会给角色应用一个负面效果标签作为标识。在这一篇里&#xff0c;我们将通过负面效果标签标识&#xff0c;应用角色身上展现对应的负面效果的表现。 我们将在这篇文章里添加一个自定…

第一个React程序

虽然跟着网上的视频&#xff0c;但是都是几年前的教学视频了&#xff0c;于是就在视频的引导下&#xff0c;自己使用vite脚手架建立一个React项目。 首先来到vite官网&#xff1a; 和当时建立vue项目一样&#xff0c;使用该命令创建&#xff0c;只是后面选择框架时选择react&a…

《机器学习》 基于SVD的矩阵分解 推导、案例实现

目录 一、SVD奇异值分解 1、什么是SVD 2、SVD的应用 1&#xff09;数据降维 2&#xff09;推荐算法 3&#xff09;自然语言处理 3、核心 1&#xff09;什么是酉矩阵 2&#xff09;什么是对角矩阵 4、分解过程 二、推导 1、如何求解这三个矩阵 1&#xff09;已知&#xf…

10款好用的电脑监控软件推荐丨2024年干货整理,赶紧码住!

选择合适的电脑监控软件可以帮助企业和个人更好地管理和保护其计算机资源。以下是10款较为好用的电脑监控软件推荐。 1. 安企神 7天试用体验https://work.weixin.qq.com/ca/cawcde06a33907e60a 简介&#xff1a;安企神是一款专为企业设计的信息安全管理软件&#xff0c;提供…

算法_队列+宽度优先搜索

文章目录 前言N叉树的层序遍历题目要求题目解析代码如下 二叉树最大宽度题目要求题目解析代码如下 在每个树中找最大值题目要求题目解析代码如下 二叉树的锯齿形层序遍历题目要求题目解析代码如下 前言 本文将会向你介绍有关队列宽度优先搜索的题目&#xff1a;N叉树的层序遍历…

目标检测-RT-DETR

RT-DETR (Real-Time Detection Transformer) 是一种结合了 Transformer 和实时目标检测的创新模型架构。它旨在解决现有目标检测模型在速度和精度之间的权衡问题&#xff0c;通过引入高效的 Transformer 模块和优化的检测头&#xff0c;提升了模型的实时性和准确性。RT-DETR 可…

Linux-实用指令

目录 前言 指定运行级别 基本介绍 切换运行级别 指令类 帮助指令 man 获得帮助信息 help指令 文件目录类 pwd指令 ls指令 cd指令 mkdir命令 rmdir指令删除空目录 touch指令 cp指令 rm指令 mv指令 cat指令 more指令 less指令 echo指令 head指令 tail指令…

2024.9.6 作业

手写unique_ptr指针指针 代码&#xff1a; #include <iostream> #include <stdexcept>template <typename T> class unique_ptr { public:// 构造函数explicit unique_ptr(T* ptr nullptr) : m_ptr(ptr) {}// 析构函数~unique_ptr() {delete m_ptr;}// 禁…

设置GB/T35114服务

GB/T35114服务是下联模式&#xff0c;支持GB/T35114标准A级双向认证&#xff0c;支持国密系列硬件设备。 操作步骤 在配置-》设备-》级联配置-》GB服务配置 进行编辑。 1、点击 编辑 2、修改国标服务器地址 3、如果其他参数也需要修改&#xff0c;都可自定义&#xff0c;除了国…

FME教程:通过更新读模块,解决FME读取shapefile数据,提示意外输入,“在转换中,某些读取的要素与工作空间的要素类不匹配……”的问题

目录 一、问题情况 二、解决方法 一、问题情况 在使用制作好的FME模板读取shapefile数据时&#xff0c;有时候会遇到弹窗提示意外输入&#xff0c;模板无法运行&#xff0c;在日志信息中警示“在转换中&#xff0c;某些读取的要素与工作空间的要素类不匹配。可能由于读模块的…

2024年全国大学生数学建模竞赛(E题) 建模解析|交通流量管控|小鹿学长带队指引全代码文章与思路

我是鹿鹿学长&#xff0c;就读于上海交通大学&#xff0c;截至目前已经帮200人完成了建模与思路的构建的处理了&#xff5e; 本篇文章是鹿鹿学长经过深度思考&#xff0c;独辟蹊径&#xff0c;实现综合建模。独创复杂系统视角&#xff0c;帮助你解决国赛的难关呀。 完整内容可以…

【前端学习】AntV G6-06 使用图算法

课程链接 图算法 Algorithm | G6 (antgroup.com) 【例子 pageRank】 ​​​​​​力导向图布局 | G6 (antgroup.com) 重点部分添加注释 import G6 from antv/g6;const { pageRank } G6.Algorithm; // 在此引入 pageRankconst container document.getElementById(containe…

无人机之报警器的作用

一、紧急救援与辅助搜救 紧急救援&#xff1a;在事故或紧急情况下&#xff0c;无人机报警器可以迅速发出警报&#xff0c;指引救援人员前往事故地点&#xff0c;提高救援效率。 辅助搜救&#xff1a;无人机搭载报警器可以辅助寻找失踪人员或其他需要搜救的场景&#xff0c;通…

MySQL数据库的介绍

目录 1.什么是MySQL数据库 2.MySQL数据库的设计 MySQL的进一步认识 MySQL的客户端 —— mysql MySQL的服务端 —— mysqld 3.MySQL数据库的架构 MySQL架构图 连接层 服务层 存储引擎层 文件系统层 4.MySQL的存储引擎 认识存储引擎 MySQL中的存储引擎 存储引擎之…

电工类 ,今日行业动态

电工类今日行业动态 一、技术发展趋势 智能化、自动化推进&#xff1a;随着人工智能、物联网等技术的不断发展&#xff0c;电工行业正逐步向智能化、自动化转型。智能电网、智能家居等领域的快速发展&#xff0c;对电工技术提出了新的要求&#xff0c;电工人员需要不断学习和…

使用matplotlib绘制散点图、柱状图和饼状图-学习篇

一、散点图 Python代码如下&#xff1a; num_points 100 x np.random.rand(num_points) #x点位随机 y np.random.rand(num_points) #y点位随机 colors np.random.rand(num_points) #颜色随机 sizes 1000 * np.random.rand(num_points) # 大小随机 alphas np.random.ran…