文心一言 VS 讯飞星火 VS chatgpt (341)-- 算法导论23.1 10题

news2025/1/12 10:03:01

十、给定图 G G G G G G的一棵最小生成树 T T T,假设减小了 T T T中一条边的权重。证明: T T T仍然是 G G G的一棵最小生成树。更形式化地,设 T T T G G G的一棵最小生成树, G G G的边权重由权重函数 w w w给出。选择一条边 ( x , y ) ∈ T (x,y)∈T (xy)T和一个正数 k k k,并定义下述的权重函数 w ′ w' w

w ′ ( u , v ) = { w ( u , v ) 若(u,v) != (x,y) w ( x , y ) − k 若(u,v)=(x,y) w'(u,v)=\begin{cases} w(u,v)& \text{若(u,v) != (x,y)}\\w(x,y)-k& \text{若(u,v)=(x,y)} \end{cases} w(u,v)={w(u,v)w(x,y)k(u,v) != (x,y)(u,v)=(x,y)

证明: T T T仍然是 G G G的一棵最小生成树,这里 G G G的边权重由函数 w ′ w' w给出。

如果要写代码,请用go语言。

文心一言:

首先,我们证明数学上的结论,然后再讨论如何用Go语言(尽管这个问题主要是数学和算法性质的,而不是直接编程问题)来“验证”或“表达”这个结论。

数学证明

T T T是图 G G G的一棵最小生成树,其权重为 W ( T ) W(T) W(T),且 G G G的边权重由函数 w w w给出。现在,我们修改了边 ( x , y ) (x,y) (x,y)的权重,得到新的权重函数 w ′ w' w,其中 w ′ ( x , y ) = w ( x , y ) − k w'(x,y) = w(x,y) - k w(x,y)=w(x,y)k k k k为正数),而其他边的权重保持不变。

假设存在另一棵生成树 T ′ T' T,在权重函数 w ′ w' w下,其权重 W ′ ( T ′ ) W'(T') W(T)小于 T T T w ′ w' w下的权重 W ′ ( T ) W'(T) W(T)

  1. 由于 T T T是最小生成树,在原始权重函数 w w w下,对于任何生成树 T ′ ′ T'' T′′(包括 T ′ T' T),都有 W ( T ) ≤ W ( T ′ ′ ) W(T) \leq W(T'') W(T)W(T′′)

  2. 现在考虑 T ′ T' T T T T w ′ w' w下的权重差异。由于除了 ( x , y ) (x,y) (x,y)之外,所有边的权重都没有改变,因此这个差异完全由 ( x , y ) (x,y) (x,y)的权重变化引起。

  3. w ′ w' w下, T ′ T' T T T T的权重差为:
    W ′ ( T ′ ) − W ′ ( T ) = ( W ( T ′ ) − w ′ ( x , y ) T ′ ) − ( W ( T ) − w ′ ( x , y ) T ) W'(T') - W'(T) = \left(W(T') - w'(x,y)_{T'}\right) - \left(W(T) - w'(x,y)_T\right) W(T)W(T)=(W(T)w(x,y)T)(W(T)w(x,y)T)
    由于 w ′ ( x , y ) T ′ = w ( x , y ) w'(x,y)_{T'} = w(x,y) w(x,y)T=w(x,y)(因为 T ′ T' T中的 ( x , y ) (x,y) (x,y)权重未改变)且 w ′ ( x , y ) T = w ( x , y ) − k w'(x,y)_T = w(x,y) - k w(x,y)T=w(x,y)k,上式可简化为:
    W ′ ( T ′ ) − W ′ ( T ) = W ( T ′ ) − W ( T ) + k W'(T') - W'(T) = W(T') - W(T) + k W(T)W(T)=W(T)W(T)+k

  4. 由于 T T T是最小生成树,在原始权重下 W ( T ) ≤ W ( T ′ ) W(T) \leq W(T') W(T)W(T),所以 W ( T ′ ) − W ( T ) ≥ 0 W(T') - W(T) \geq 0 W(T)W(T)0

  5. 因此, W ′ ( T ′ ) − W ′ ( T ) ≥ k > 0 W'(T') - W'(T) \geq k > 0 W(T)W(T)k>0,这与假设 W ′ ( T ′ ) < W ′ ( T ) W'(T') < W'(T) W(T)<W(T)相矛盾。

  6. 所以,不存在这样的 T ′ T' T,使得在 w ′ w' w W ′ ( T ′ ) < W ′ ( T ) W'(T') < W'(T) W(T)<W(T)。因此, T T T w ′ w' w下仍然是 G G G的一棵最小生成树。

Go语言表示(非直接证明代码)

虽然这个问题不是直接通过编程来解决的,但我们可以编写一个简单的Go程序来模拟这个场景,比如通过构建一个图、计算最小生成树(例如使用Kruskal算法或Prim算法),然后修改一条边的权重,并检查修改后的树是否仍然是最小生成树(尽管在实际代码中,我们可能只是重新计算权重,而不是重新计算整个最小生成树,因为我们已经知道修改后的树就是原来的树)。

然而,由于篇幅和复杂性,这里不给出完整的Go代码实现。相反,上述数学证明已经足够说明问题。如果需要编程实践,建议从学习如何构建图、实现最小生成树算法开始,然后尝试修改边权重并验证结果。

在这里插入图片描述

在这里插入图片描述

讯飞星火:

package main

import (
	"fmt"
)

type Edge struct {
	u, v, weight int
}

func find(parent []int, i int) int {
	if parent[i] == -1 {
		return i
	}
	return find(parent, parent[i])
}

func union(parent []int, rank []int, x, y int) {
	xroot := find(parent, x)
	yroot := find(parent, y)

	if rank[xroot] < rank[yroot] {
		parent[xroot] = yroot
	} else if rank[xroot] > rank[yroot] {
		parent[yroot] = xroot
	} else {
		parent[yroot] = xroot
		rank[xroot]++
	}
}

func kruskalMST(graph []Edge, V int) []Edge {
	sort.Slice(graph, func(i, j int) bool {
		return graph[i].weight < graph[j].weight
	})

	parent := make([]int, V)
	rank := make([]int, V)
	for i := 0; i < V; i++ {
		parent[i] = -1
		rank[i] = 0
	}

	mst := make([]Edge, 0)
	e := 0
	i := 0
	for e < V-1 && i < len(graph) {
		u := graph[i].u
		v := graph[i].v
		w := graph[i].weight
		i++

		x := find(parent, u)
		y := find(parent, v)

		if x != y {
			e++
			mst = append(mst, Edge{u, v, w})
			union(parent, rank, x, y)
		}
	}

	return mst
}

func main() {
	V := 4
	edges := []Edge{
		{0, 1, 10},
		{0, 2, 6},
		{0, 3, 5},
		{1, 3, 15},
		{2, 3, 4},
	}

	mst := kruskalMST(edges, V)
	fmt.Println("Minimum Spanning Tree:")
	for _, edge := range mst {
		fmt.Printf("%d -- %d == %d\n", edge.u, edge.v, edge.weight)
	}
}

360智脑:

首先,我们需要证明在减小了 T T T中一条边的权重后, T T T仍然是一棵生成树。由于我们只改变了 T T T中的一条边的权重,而没有增加或删除任何边,所以 T T T仍然连接了所有的节点,并且没有形成环,因此它仍然是一棵生成树。

接下来,我们需要证明 T T T是具有新权重函数 w ′ w' w的最小生成树。为了证明这一点,我们可以使用反证法。假设存在一棵比 T T T更小的生成树 T ′ T' T,其总权重小于 T T T的总权重。考虑以下两种情况:

  1. ( x , y ) ∉ T ′ (x, y) \notin T' (x,y)/T:在这种情况下, T ′ T' T T T T的权重都是由 w w w计算的,但是我们知道 T T T是最小生成树,所以 T ′ T' T的总权重不可能小于 T T T的总权重,这与我们的假设矛盾。

  2. ( x , y ) ∈ T ′ (x, y) \in T' (x,y)T:在这种情况下,我们可以从 T ′ T' T中移除边 ( x , y ) (x, y) (x,y),然后添加边 ( x , y ) (x, y) (x,y) T T T中,得到一个新的生成树 T ′ ′ T'' T′′。由于我们只改变了 ( x , y ) (x, y) (x,y)的权重,所以 T ′ ′ T'' T′′的总权重等于 T ′ T' T的总权重加上 k k k(因为 w ′ ( x , y ) = w ( x , y ) − k w'(x, y) = w(x, y) - k w(x,y)=w(x,y)k)。但是, T ′ ′ T'' T′′的总权重仍然大于或等于 T T T的总权重(因为 T T T是最小生成树),所以 T ′ T' T的总权重也必须大于或等于 T T T的总权重,这与我们的假设矛盾。

综上所述,我们可以得出结论: T T T仍然是具有新权重函数 w ′ w' w的最小生成树。

至于编写Go语言代码来验证这个证明,实际上并不需要。因为这个证明是一个理论上的证明,它是通过逻辑推理来得出结论的,而不是通过编程实现的。然而,如果你想要实现一个算法来找到一个图的最小生成树,你可以使用Kruskal算法或者Prim算法,这些算法可以在Go语言中实现。但是,这些算法的实现与这个证明本身无关。

在这里插入图片描述

智谱清言:

要证明减小权重后的 T T T仍然是图 G G G的一棵最小生成树,我们可以遵循以下逻辑,而无需编写代码,因为这个证明是基于图论的理论性质,而不是计算问题。不过,为了展示如何使用Go语言进行图论相关的操作,我可以提供一个简单的Go语言代码示例,用于生成最小生成树(使用Kruskal算法),但这并不直接证明上述命题。
下面是证明的逻辑:

  1. 最小生成树的定义:最小生成树是连接图中所有顶点的边的集合,且边的总权重最小,并且没有环。
  2. 减小边权重:根据定义,我们减小了 T T T中的一条边 ( x , y ) (x, y) (x,y)的权重,得到新的权重函数 w ′ w' w
  3. 证明过程
    • 假设 T T T在权重函数 w ′ w' w下不再是生成树,那么 T T T中必然存在一个环,这是不可能的,因为 T T T在原始权重函数 w w w下是一棵树。
    • 假设 T T T在权重函数 w ′ w' w下不再是权重最小的生成树,那么存在另一棵生成树 T ′ T' T使得 w ′ ( T ′ ) < w ′ ( T ) w'(T') < w'(T) w(T)<w(T)。但是由于 w ′ w' w仅在边 ( x , y ) (x, y) (x,y)上与 w w w不同,且 w ′ ( x , y ) < w ( x , y ) w'(x, y) < w(x, y) w(x,y)<w(x,y),这意味着 T ′ T' T在原始权重函数 w w w下的权重和将大于或等于 T T T的权重和,这与 T T T是最小生成树的假设矛盾。
      因此, T T T在权重函数 w ′ w' w下仍然是图 G G G的一棵最小生成树。
      下面是Go语言中实现Kruskal算法的示例代码,用于生成最小生成树:
package main
import (
	"container/heap"
	"fmt"
)
// Edge represents an edge in the graph.
type Edge struct {
	from   int
	to     int
	weight int
}
// EdgeHeap is a min-heap of edges.
type EdgeHeap []Edge
func (h EdgeHeap) Len() int           { return len(h) }
func (h EdgeHeap) Less(i, j int) bool { return h[i].weight < h[j].weight }
func (h EdgeHeap) Swap(i, j int)      { h[i], h[j] = h[j], h[i] }
func (h *EdgeHeap) Push(x interface{}) {
	*h = append(*h, x.(Edge))
}
func (h *EdgeHeap) Pop() interface{} {
	old := *h
	n := len(old)
	x := old[n-1]
	*h = old[0 : n-1]
	return x
}
// Find finds the root of the set containing x.
func Find(parent []int, x int) int {
	if parent[x] != x {
		parent[x] = Find(parent, parent[x])
	}
	return parent[x]
}
// Union merges the sets containing x and y.
func Union(parent []int, x, y int) {
	rootX := Find(parent, x)
	rootY := Find(parent, y)
	if rootX != rootY {
		parent[rootY] = rootX
	}
}
// Kruskal finds the minimum spanning tree of a graph.
func Kruskal(edges []Edge, numVertices int) []Edge {
	// Initialize a min-heap for edges.
	h := make(EdgeHeap, len(edges))
	copy(h, edges)
	heap.Init(&h)
	// Initialize the parent array for union-find.
	parent := make([]int, numVertices)
	for i := range parent {
		parent[i] = i
	}
	// List of edges in the minimum spanning tree.
	mst := []Edge{}
	for h.Len() > 0 {
		edge := heap.Pop(&h).(Edge)
		if Find(parent, edge.from) != Find(parent, edge.to) {
			mst = append(mst, edge)
			Union(parent, edge.from, edge.to)
		}
	}
	return mst
}
func main() {
	// Example graph with 4 vertices.
	edges := []Edge{
		{0, 1, 10},
		{0, 2, 6},
		{0, 3, 5},
		{1, 3, 15},
		{2, 3, 4},
	}
	mst := Kruskal(edges, 4)
	fmt.Println("Minimum Spanning Tree:")
	for _, edge := range mst {
		fmt.Printf("%d - %d: %d\n", edge.from, edge.to, edge.weight)
	}
}

这段代码使用了Kruskal算法来找到一个无向加权图的最小生成树。请注意,这段代码并不直接证明上述命题,但它展示了如何在Go语言中处理图论问题。

天工:

证明 T T T 仍然是 G G G 的最小生成树

要证明 T T T 仍然是 G G G 的最小生成树,我们需要证明对于 G G G 中的任何生成树 T ′ T' T T T T 的权重总和小于或等于 T ′ T' T 的权重总和,这里 G G G 的边权重由 w ′ w' w 给出。

  1. 定义与记法:

    • T T T G G G 的最小生成树,边权重由 w w w 给出。
    • 选择一条边 ( x , y ) ∈ T (x, y) \in T (x,y)T 和一个正数 k k k
    • 定义新的权重函数 w ′ w' w,其中 w ′ ( u , v ) = w ( u , v ) w'(u, v) = w(u, v) w(u,v)=w(u,v) ( u , v ) ≠ ( x , y ) (u, v) \neq (x, y) (u,v)=(x,y),且 w ′ ( x , y ) = w ( x , y ) − k w'(x, y) = w(x, y) - k w(x,y)=w(x,y)k
  2. 证明:

    • 假设存在另一棵生成树 T ′ T' T,其权重总和小于 T T T 的权重总和(根据 w ′ w' w)。
    • 由于 T T T G G G 的最小生成树(根据 w w w),则在 w w w T T T 的权重总和小于等于 T ′ T' T 的权重总和。
    • 由于 w ′ ( u , v ) = w ( u , v ) w'(u, v) = w(u, v) w(u,v)=w(u,v) ( u , v ) ≠ ( x , y ) (u, v) \neq (x, y) (u,v)=(x,y) T ′ T' T T T T 中除 ( x , y ) (x, y) (x,y) 以外的边权重相同。
    • 因此, T ′ T' T T T T 的权重差异仅在于 ( x , y ) (x, y) (x,y) 的权重。
    • 如果 T ′ T' T 不包含 ( x , y ) (x, y) (x,y),那么 T ′ T' T w ′ w' w 下的权重总和至少等于在 w w w 下的权重总和,因为 ( x , y ) (x, y) (x,y) 是唯一被减小权重的边。
    • 如果 T ′ T' T 包含 ( x , y ) (x, y) (x,y),则 T ′ T' T w ′ w' w 下的权重总和为 T ′ T' T w w w 下的权重总和减去 k k k
    • 但是,由于 T T T G G G 的最小生成树(根据 w w w), T T T w w w 下的权重小于等于 T ′ T' T w w w 下的权重。
    • 因此,即使减去 k k k T T T w ′ w' w 下的权重总和仍然小于等于 T ′ T' T w ′ w' w 下的权重总和。

    结论:对于任何生成树 T ′ T' T T T T 的权重总和在 w ′ w' w 下小于等于 T ′ T' T 的权重总和。因此, T T T 仍然是 G G G 的最小生成树。

代码实现(Go语言)

在实际中,直接证明数学定理通常不需要编写代码,但为了演示,我们可以创建一个简单的函数来模拟这个过程:

package main

import (
    "fmt"
)

func isStillMST(w, wPrime map[[2]int]int, x, y int) bool {
    // This function is a pseudo-implementation and does not actually check all possible T' trees.
    // It's a conceptual representation of the proof.
    // w is the original weight function, wPrime is the modified weight function.
    // x, y are the vertices of the edge whose weight has been decreased.
    
    // For the sake of this example, assume w and wPrime are already calculated correctly.
    // The actual implementation would involve complex graph algorithms.
    
    // Since the proof is theoretical, the function always returns true as a placeholder.
    return true
}

func main() {
    w := map[[2]int]int{{0, 1}: 10, {1, 2}: 20, {2, 3}: 30}
    wPrime := map[[2]int]int{{0, 1}: 10, {1, 2}: 15, {2, 3}: 30} // Assume (1, 2) is the edge with decreased weight
    x, y := 1, 2
    k := 5

    fmt.Println("Is T still the minimum spanning tree after decreasing the edge weight?", isStillMST(w, wPrime, x, y))
}

请注意,上述代码是一个概念性的实现,用于说明证明的逻辑,并不真正实现图的最小生成树算法或证明的数学细节。

chatgpt:

首先,我们可以观察到在新的权重函数 w ′ w' w下,边 ( x , y ) (x, y) (x,y)的权重变为了 w ( x , y ) − k w(x, y) - k w(x,y)k。根据题目的要求,我们需要证明在新的权重函数下, T T T仍然是 G G G的一棵最小生成树。

我们可以使用反证法来证明这个结论。假设存在另外一棵生成树 T ′ T' T T T T更小(即总权重更小)。那么我们可以找到一条边 ( u , v ) (u, v) (u,v)属于 T ′ T' T但不属于 T T T

考虑这条边 ( u , v ) (u, v) (u,v),有两种情况:

  1. 如果 ( u , v ) = ( x , y ) (u, v) = (x, y) (u,v)=(x,y),也就是说 ( u , v ) (u, v) (u,v)正好是原来被修改了权重的那条边。由于我们减小了 ( x , y ) (x, y) (x,y)的权重 k k k,所以新的边 ( u , v ) (u, v) (u,v)满足 w ′ ( u , v ) = w ( x , y ) − k < w ( u , v ) w'(u,v) = w(x,y)-k < w(u,v) w(u,v)=w(x,y)k<w(u,v)
    这意味着在新的权重函数下,边 ( u , v ) (u,v) (u,v)比原来更轻,所以如果替换掉原来的边 ( x , y ) (x,y) (x,y)并加上边 ( u , v ) (u,v) (u,v)后,得到的生成树会比原来更小。
    但这与我们假设中的生成树 T ′ T' T T T T 更小矛盾。

  2. 如果 ( u , v ) ≠ ( x , y ) (u,v) \neq (x,y) (u,v)=(x,y),也就是说 ( u , v ) (u, v) (u,v)不是原来被修改了权重的那条边。根据题目条件,这条边在原来的生成树 T T T 中存在。
    根据最小生成树的性质,在生成树中任意两个节点之间只有一条唯一路径连接。那么在生成树 T ′ T' T 中也必然存在一条路径连接顶点 u u u v v v
    假设我们从原来的生成树 T T T 中删除边 ( u , v ) (u, v) (u,v),然后添加边 ( x , y ) (x, y) (x,y) 构成新的树 T ′ ′ T'' T′′
    根据题目给定,新边 ( x , y ) (x, y) (x,y) 的权重为 w ( x , y ) − k w(x, y) - k w(x,y)k,而删除掉的边 ( u , v ) (u,v) (u,v) 在原图中权重为 w ( u , v ) w(u,v) w(u,v)
    由于我们假设了生成树 T ′ T' T 比生成树 T T T 更小,所以总权重应该满足:
    total weight ( T ′ ′ ) = total weight ( T ) − w ( u , v ) + w ( x , y ) − k < total weight ( T ) \text{total weight}(T'') = \text{total weight}(T) - w(u,v) + w(x,y) - k < \text{total weight}(T) total weight(T′′)=total weight(T)w(u,v)+w(x,y)k<total weight(T)
    这与我们假设中的生成树 T ′ T' T T T T 更小矛盾。

因此,在所有可能情况下都导致矛盾,我们可以得出结论:在新的权重函数下,生成树 T 仍然是 G 的一棵最小生成树。

以下是使用Go语言实现的示例代码:

package main

import (
	"fmt"
)

type Edge struct {
	u, v, weight int
}

func find(parent []int, i int) int {
	if parent[i] == i {
		return i
	}
	return find(parent, parent[i])
}

func union(parent []int, rank []int, x int, y int) {
	xRoot := find(parent, x)
	yRoot := find(parent, y)

	if rank[xRoot] < rank[yRoot] {
		parent[xRoot] = yRoot
	} else if rank[xRoot] > rank[yRoot] {
		parent[yRoot] = xRoot
	} else {
		parent[yRoot] = xRoot
		rank[xRoot]++
	}
}

func kruskal(graph []Edge, nVertices int) []Edge {
	result := make([]Edge, 0)
	parent := make([]int, nVertices)
	rank := make([]int, nVertices)

	for i := 0; i < nVertices; i++ {
		parent[i] = i
		rank[i] = 0
	}

	for _, edge := range graph {
		x := find(parent, edge.u)
		y := find(parent, edge.v)

        // 如果边 (x,y) 不属于原来的最小生成树 T,则加入结果集中,并合并两个顶点所在的集合
        if x != y {  
            result = append(result, edge)
            union(parent, rank, x, y)
        }
    }

    return result
}

func main() {
	graph := []Edge{
        {0 ,1 ,4},
        {0 ,7 ,8},
        {1 ,2 ,8},
        {1 ,7 ,11},
        {2 ,3 ,7},
        {2 ,8 ,2},
        {2 ,5, 4},
        {3, 4, 9},
        {3, 5, 14},
        {4, 5, 10},
        {5, 6, 2},
        {6, 7, 1},
        {6, 8, 6},
        {7, 8, 7},
    }
    
    n := len(graph)
    T := kruskal(graph, n)
    
    fmt.Println("原来的最小生成树:")
    for _, edge := range T {
    	fmt.Printf("(%d,%d) weight:%d\n", edge.u, edge.v, edge.weight)
    }
    
    // 假设减小了边 (0,1) 的权重
    x := Edge{0 ,1 ,4}
    k := 2
    
    wPrime := func(u int,v int) int {
    	if u == x.u && v == x.v {
    		return x.weight - k
    	}
    	return graph[u].weight
    }
    
    fmt.Println("新的最小生成树:")
    
	for i := range T {
	    if T[i] == x {
	    	T[i].weight = x.weight - k
	    	break
	    }
	}
	
	for _, edge := range T {
		fmt.Printf("(%d,%d) weight:%d\n", edge.u, edge.v, edge.weight)
	}
}

希望这个例子可以帮助你理解如何证明给定图和最小生成树下的权重变化。注意在实际应用中,你可能需要根据具体情况对代码进行适当的修改。
LinuxC/C++技术深入学习(技术提升+就业指导帮助你拿高薪offer)点击了解:https://it.0voice.com

kimi:

要证明在权重函数 w ′ w' w 下, T T T 仍然是 G G G 的一棵最小生成树,我们不需要编写代码,因为这是一个图论的数学证明问题。不过,我可以帮你梳理一下证明的逻辑。

证明的关键在于理解最小生成树的性质和边权重的变化对最小生成树的影响。以下是证明的步骤:

  1. 最小生成树的定义:在无向图中,最小生成树是一棵包含所有顶点的树,且边的权重之和最小。

  2. 权重函数 w ′ w' w 的定义:权重函数 w ′ w' w 与原权重函数 w w w 相同,除了边 ( x , y ) (x, y) (x,y) 的权重减少了 k k k

  3. 反证法:假设存在另一棵最小生成树 T ′ T' T,在权重函数 w ′ w' w 下的权重小于 T T T 的权重。

  4. 分析 T ′ T' T:如果 T ′ T' T 包含边 ( x , y ) (x, y) (x,y),那么由于 w ′ ( x , y ) < w ( x , y ) w'(x, y) < w(x, y) w(x,y)<w(x,y) T ′ T' T 的权重将小于 T T T 的权重,这与 T T T 是最小生成树的事实矛盾。

  5. 考虑 T ′ T' T 不包含 ( x , y ) (x, y) (x,y) 的情况:如果 T ′ T' T 不包含边 ( x , y ) (x, y) (x,y),那么它必须包含其他边以保持连通性。由于 T T T 是最小生成树,任何不在 T T T 中的边在 w w w 下的权重都至少与 T T T 中的边的权重一样大。因此, T ′ T' T w ′ w' w 下的权重不会小于 T T T w ′ w' w 下的权重。

  6. 得出结论:由于 T ′ T' T 不能比 T T T 有更小的权重,我们可以得出结论, T T T 在权重函数 w ′ w' w 下仍然是 G G G 的最小生成树。

这个证明不需要编写代码,因为它不涉及算法或程序的实现。它是一个纯粹的逻辑和数学证明。如果你需要关于图论算法的代码,例如寻找最小生成树的算法(如 Kruskal 算法或 Prim 算法),我可以为你提供 Go 语言的示例代码。但在这个特定的问题中,我们只是在讨论理论证明。

在这里插入图片描述

混元:

我们可以使用Kruskal算法的思想来证明这个问题,以下是Go语言的伪代码:

package main

import (
	"fmt"
	"sort"
)

type Edge struct {
	u, v, weight int
}

type DisjointSet struct {
	parent []int
	rank   []int
}

func NewDisjointSet(n int) *DisjointSet {
	parent := make([]int, n)
	rank := make([]int, n)
	for i := range parent {
		parent[i] = i
	}
	return &DisjointSet{parent, rank}
}

func (ds *DisjointSet) Find(x int) int {
	if ds.parent[x] != x {
		ds.parent[x] = ds.Find(ds.parent[x])
	}
	return ds.parent[x]
}

func (ds *DisjointSet) Union(x, y int) bool {
	rootX := ds.Find(x)
	rootY := ds.Find(y)
	if rootX == rootY {
		return false
	}
	if ds.rank[rootX] > ds.rank[rootY] {
		ds.parent[rootY] = rootX
	} else if ds.rank[rootX] < ds.rank[rootY] {
		ds.parent[rootX] = rootY
	} else {
		ds.parent[rootY] = rootX
		ds.rank[rootX]++
	}
	return true
}

func kruskal(n int, edges []Edge, w func(Edge) int) []Edge {
	sort.Slice(edges, func(i, j int) bool {
		return w(edges[i]) < w(edges[j])
	})
	ds := NewDisjointSet(n)
	var mst []Edge
	for _, edge := range edges {
		if ds.Union(edge.u, edge.v) {
			mst = append(mst, edge)
			if len(mst) == n-1 {
				break
			}
		}
	}
	return mst
}

func main() {
	// 示例图G和最小生成树T
	n := 5
	edges := []Edge{
		{0, 1, 2}, {0, 3, 6}, {1, 2, 3}, {1, 3, 8}, {1, 4, 5},
		{2, 4, 7}, {3, 4, 9},
	}
	T := []Edge{
		{0, 1, 2}, {1, 2, 3}, {1, 4, 5}, {0, 3, 6},
	}

	// 减小边(x, y)的权重
	x, y, k := 1, 3, 2
	w := func(edge Edge) int {
		if edge.u == x && edge.v == y {
			return edge.weight - k
		}
		return edge.weight
	}

	// 使用Kruskin算法计算新的最小生成树
	newMST := kruskal(n, edges, w)

	// 输出新的最小生成树
	fmt.Println("新的最小生成树:")
	for _, edge := range newMST {
		fmt.Printf("(%d, %d) -> %d\n", edge.u, edge.v, w(edge))
	}
}

这个伪代码首先定义了一个Edge结构体来表示图的边,以及一个DisjointSet结构体来实现并查集数据结构。然后,我们实现了Kruskal算法,并在主函数中使用了一个示例图G和最小生成树T。我们减小了边(x, y)的权重,并使用Kruskal算法计算新的最小生成树。最后,我们输出了新的最小生成树。

注意:这个伪代码仅用于演示目的,实际应用中可能需要进行优化和改进。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2111126.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

职称评审中,论文发表要求?

无论是医生、教师或其他等职业&#xff0c;职称评审无疑是一个非常重要的环节。而职称评审中的论文发表则是评定我们专业能力的重要一环&#xff0c;可如何才能让自己辛苦撰写的的论文被发表&#xff0c;达到论文发表都有哪些要求呢&#xff1f; 一、选题要新颖 编辑和审稿人…

VMware的三种网络模式及应用场景

在VMware中&#xff0c;虚拟机网络连接的方式主要有三种模式&#xff1a;桥接模式&#xff08;Bridged Mode&#xff09;、NAT模式&#xff08;Network Address Translation Mode&#xff09;、仅主机模式&#xff08;Host-Only Mode&#xff09;。每种模式都有其独特的用途和配…

SSM+Ajax实现广告系统

文章目录 1.案例需求2.编程思路3.案例源码(这里只给出新增部分的Handler和ajax部分&#xff0c;需要详情的可以私信我)4.小结 1.案例需求 使用SSMAjax实现广告系统&#xff0c;包括登录、查询所有、搜索、新增、删除、修改等功能&#xff0c;具体实现的效果图如下&#xff1a;…

『功能项目』状态模式转换场景【30】

本章项目成果展示 打开上一篇29Unity本地数据库读取进入游戏的项目&#xff0c; 本章要做的事情是通过状态者模式转换场景&#xff0c;在进入账号登陆界面前闪烁显示Logo 首先创建一个新的场景命名为StartUI 修改游戏场景名字 重命名为FightGame01 首先创建一个脚本文件夹&…

gazebo可能打不开的问题

如果经常遇到gazebo只能断网才能运行的时候&#xff0c;主要就是因为无法联网访问gazebo的在线模型库&#xff0c;此时我们一般无法在联网的情况下打开gazebo。 这个时候就直接将下载好的模型先放到~/.gazebo/models/文件夹下面即可&#xff1a; https://github.com/osrf/gazeb…

RTOS Sensor Framework对比

1.背景 传感器(Sensor)是物联网(IOT)的重要组成部分&#xff0c;用于感知和采集环境中的各种数据&#xff0c;大部分智能硬件都需要。 为使传感器能正常⼯作&#xff0c;驱动开发者需要开发不同的驱动程序&#xff0c;驱动程序要实现芯片寄存器\IO设置&#xff0c;又要响应使用…

搭建 canal 监控mysql数据到 elasticsearch 中(本机到远端sql)

搭建 canal 监控mysql数据到 elasticsearch 中&#xff08;本机到远端sql&#xff09; 需求: 要将 MySQL 数据库 info 中的 notice 和 result 表的增、删、改操作同步到 Elasticsearch 的 notice 和 result 索引&#xff0c;您需要正确配置 MySQL、Canal 、Canal Adapter 、 …

3--Web前端开发-前端工程化,vue项目

目录 端口配置 element 快速入门 table表格组件 分页组件 Dialog对话框组件 表单组件 端口配置 在vue.config.js中更改 源代码为 const { defineConfig } require(vue/cli-service) module.exports defineConfig({transpileDependencies: true })更改为 const { def…

Linux——redis主从复制、哨兵模式

一、redis 的安全加固&#xff1a; 对redis数据库访问的角度 auth // 验证登录redis 数据库的用户acl // 设置redis用户的权限将配置完成的ACL策略写入配置文件 config rewrite //目前redis生效的配置全部写入到默认配置文件的尾部写入到acl文件中&#xff0c;在加载配置文件时…

《论软件设计模式及其应用》通关范文,软考高级系统架构设计师

论文真题 设计模式(Design Pattern)是一套被反复使用的代码设计经验总结,代表了软件开发人员在软件开发过程中面临的一般问题的解决方案和最佳实践。使用设计模式的目的是提高代码的可重用性,让代码更容易被他人理解,并保证代码可靠性。现有的设计模式已经在前人的系统中…

每日一练:和为K的子数组

一、题目要求 给你一个整数数组 nums 和一个整数 k &#xff0c;请你统计并返回 该数组中和为 k 的子数组的个数 。 子数组是数组中元素的连续非空序列。 示例 1&#xff1a; 输入&#xff1a;nums [1,1,1], k 2 输出&#xff1a;2示例 2&#xff1a; 输入&#xff1a;n…

python深度学习:从注意力机制到生成模型,全面解析现代AI技术

近年来&#xff0c;伴随着以卷积神经网络&#xff08;CNN&#xff09;为代表的深度学习的快速发展&#xff0c;人工智能迈入了第三次发展浪潮&#xff0c;AI技术在各个领域中的应用越来越广泛。注意力机制、Transformer模型&#xff08;BERT、GPT-1/2/3/3.5/4、DETR、ViT、Swin…

OpenCV结构分析与形状描述符(10)检测并提取轮廓函数findContours()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在二值图像中查找轮廓。 该函数使用算法 253从二值图像中检索轮廓。轮廓是有用的工具&#xff0c;可用于形状分析和对象检测与识别。参见 OpenC…

SDN架构详解

目录 1&#xff09;经典的IP网络-分布式网络 2&#xff09;经典网络面临的问题 3&#xff09;SDN起源 4&#xff09;OpenFlow基本概念 5&#xff09;Flow Table简介 6&#xff09;SDN的网络架构 7&#xff09;华为SDN网络架构 8&#xff09;传统网络 vs SDN 9&#xf…

网络安全与恶意攻击:如何应对?

引言 随着技术的发展&#xff0c;我们的生活越来越依赖于网络。但是&#xff0c;这也暴露了我们的系统对各种网络威胁的脆弱性。无论是个人还是企业&#xff0c;网络安全都成为了我们不能忽视的话题。 网络威胁的类型 网络威胁主要有以下几种&#xff1a; 网络钓鱼攻击&#…

linux学习--第四天

--linux文件操作 文件IO操作包括&#xff1a; &#xff08;注&#xff1a;I&#xff1a;input&#xff08;输入&#xff09;O&#xff1a;output&#xff08;输出&#xff09;&#xff09; open&#xff1a;打开 close&#xff1a;关闭 read&#xff1a;读取 write&#xff1a;…

c++一个数因子和(快速求解)

void 一个数因子和(int 整数) {//缘由https://ask.csdn.net/questions/1054457#answer_1251715int he 0, j 0; string a "";while (j < 整数)if (!(整数%j))he j, a to_string(j) "";cout << a << "的因子和&#xff1a;" …

如何在 Java 应用程序中定位高 CPU 使用率问题

文章目录 ♨ 前言♨ 提前准备♨ 线上定位♨ 结语 ♨ 前言 在运行 Java 应用程序的服务器上&#xff0c;高 CPU 使用率可能会影响应用程序的性能和稳定性。本文将介绍如何通过一系列步骤和工具来准确诊断和解决高 CPU 使用率问题&#xff0c;特别是针对 Java 环境下的应用程序。…

OpenCV影像数据处理入门-学习篇

目录 简介如何安装图像数据处理简单操作视频数据处理简单操作 一、简介 在计算机视觉项目的开发中&#xff0c;OpenCV作为最大众的开源库&#xff0c;拥有了丰富的常用图像处理函数库&#xff0c;可用于开发实时的图像处理、计算机视觉以及模式识别程序。采用C/C语言编写&am…

用于辅助视障人士检测人行道障碍物的 TinyML 模型

这篇论文的标题为《A TinyML model for sidewalk obstacle detection: aiding the blind and visually impaired people》&#xff0c;发表在《Multimedia Tools and Applications》上。以下是论文的主要内容概述&#xff1a; 摘要&#xff1a; 论文介绍了在资源受限的物联网…