【2024全国大学生数学建模竞赛】B题 模型建立与求解(含代码与论文)

news2024/11/15 11:10:06

目录

  • 1问题重述
    • 1.1问题背景
    • 1.2研究意义
    • 1.3具体问题
  • 2总体分析
  • 3模型假设
  • 4符号说明(等四问全部更新完再写)
  • 5模型的建立与求解
    • 5.1问题一模型的建立与求解
      • 5.1.1问题的具体分析
      • 5.1.2模型的准备

目前B题第一问的详细求解过程以及对应论文部分已经完成!
- 晚上7-8点之前第二问完成
- 明天中文之前全部写完
在这里插入图片描述
按照提交论文的格式进行撰写!完整版请看文章最后!

1问题重述

1.1问题背景

某企业专注于生产一种在市场上广受欢迎的电子产品。这一产品的生产过程包括两个关键环节:采购和装配。这两个环节中,涉及到两种主要的零配件(我们称之为零配件1和零配件2)。这些零配件的质量直接决定了最终产品的质量。在生产过程中,任何一个零配件的次品都可能导致整个成品的次品率升高,从而影响产品的整体性能和可靠性。

因此,企业非常重视在零配件采购、装配和成品出厂的各个环节对产品质量进行严格的控制。然而,这种质量控制过程并不是没有代价的。它伴随着高昂的检测费用、拆解成本和不合格品的处理成本。如果处理不当,不仅会影响企业的生产效率,还可能带来信誉损失和客户的不满,进而影响企业的市场地位和品牌形象。

为了优化质量控制流程,企业希望通过科学的抽样检测方法,在最少的检测次数下确保零配件的质量,并在成品组装过程中根据具体情况做出最优决策。此外,企业还需应对成品检测后可能产生的不合格品拆解问题,尽可能减少不合格品的浪费及对企业声誉的影响。在这种背景下,建立一个综合考虑检测成本、拆解成本、市场损失的数学模型,对企业的生产过程进行全面优化显得尤为重要。

通过这样的数学模型,企业可以更精确地评估各个环节的成本和潜在风险,从而制定出更加科学合理的生产计划和质量控制策略。这不仅有助于降低生产成本,提高生产效率,还能确保最终产品的质量,满足市场需求,提升客户满意度。最终,企业将能够在激烈的市场竞争中保持优势,实现可持续发展。

1.2研究意义

本研究旨在通过数学模型优化生产质量控制和决策流程,具体包括:提升产品质量控制效率,减少检测次数和成本;降低生产成本浪费,提高生产效率;减少不合格产品影响,增强客户信任和忠诚度;帮助企业制定生产策略,降低次品率和市场损失,提高经济效益;提供涵盖全流程的系统化决策支持,优化运营管理。

1.3具体问题

  • 问题一:设计一个最少检测次数的抽样检测方案,以确定供应商提供的零配件次品率是否符合标称要求。
  • 问题二:根据零配件和成品的次品率,优化企业在生产过程中关于检测、装配和拆解的不合格品处理决策。
  • 问题三:在多工序和多零配件的生产流程中,制定最优的检测、装配和拆解决策方案,确保生产效率和质量控制。
  • 问题四:假设次品率通过抽样检测获得,重新设计生产过程中的决策方案。

2总体分析

首先,问题1要求建立一个抽样检测方案来确定是否接收供应商的零配件。企业需要在两种情况下作出决策:如果在95%的信度下,零配件的次品率超过了供应商声明的标称值(例如10%),则企业应拒收这批零配件;反之,在90%的信度下,如果次品率不超过标称值,则接收这批零配件。这一问题的解决涉及到统计假设检验的运用,需要确定合适的样本大小以减少检测成本,同时控制错误接受和错误拒绝的风险。可以通过二项分布或正态分布近似来估计抽样分布,从而设定合适的拒绝域和接受域。

问题2进一步深入到生产流程的多个决策点,包括是否对零配件和成品进行检测、如何处理检测出的不合格品、以及如何处理客户退回的不合格成品。这些决策需要基于成本效益分析和风险评估进行优化。例如,企业可以选择对所有零配件和成品进行全检,以确保质量,但这将大幅增加成本;或者只对抽样检测出的不合格品进行拆解和再利用,以减少成本。此外,对于客户退回的不合格品,企业需要决定是直接报废还是拆解后重新进入生产流程,这不仅关系到成本,还可能影响到企业的信誉和客户满意度。

问题3则是一个更为复杂的情景,涉及多道工序和多个零配件的生产决策。在这一问题中,企业需要针对每个工序和零配件的次品率、成本和其他相关数据,制定一套完整的生产和质量控制策略。这可能涉及到组合优化、多阶段决策问题的解决,如何在保证产品整体质量的同时,最大限度地减少生产成本和风险。例如,企业可能需要决定在某些工序中增加检测频率,或者选择在某些零配件上采取更为严格的质量控制措施。

最后,问题4要求在前述所有决策的基础上,考虑通过抽样检测得到的次品率数据的可靠性和准确性,并重新评估和调整生产决策。这一问题的核心是数据质量对决策的影响,需要企业在实际操作中对抽样方法、频率和数据处理方式进行优化,确保所得数据能够真实反映生产状况,以便更准确地进行成本和风险的评估。

综上所述,这四个问题不仅考验了参赛者在统计分析和假设检验方面的能力,还涉及到运筹学、决策分析和风险管理的知识。参赛者需要综合运用这些理论和方法,设计出既科学又实用的解决方案,帮助企业在复杂多变的生产环境中做出最优决策。

3模型假设

  • 假设一:所有零配件和生产工序之间相互独立,即每种零配件的质量和每个工序的效率不相互影响。这使得分析可以针对单独的零配件或工序进行,而不需要处理复杂的交互效应。
  • 假设二:在整个生产周期内,每种零配件或半成品的次品率保持恒定,不受生产批次或时间的变化影响。此外,所有相关的成本(包括购买单价、检测成本、装配成本和拆解费用)也保持固定,不受外部市场或经济因素的干扰。
  • 假设三:所有操作(如装配、检测、拆解)都能按照预定的最优流程高效执行,不存在操作效率损失。同时,生产设备始终处于良好状态,不考虑设备故障或维护需求,确保生产过程的连续性和稳定性。

4符号说明(等四问全部更新完再写)

5模型的建立与求解

5.1问题一模型的建立与求解

在这里插入图片描述

完成求解过程请看文章最后!

5.1.1问题的具体分析

问题一要求制定一个抽样检测计划,以决定是否接受一批零配件,基于供应商所声称的次品率。关键在于如何确定适当的样本量和决策标准,以最小化检测成本,同时确保决策的高可靠性。

在具体分析中,企业面临的主要挑战是在95%的置信水平下拒收次品率超过标称值的零配件,在90%的置信水平下接受次品率不超过标称值的零配件。这涉及到统计假设检验,特别是需要控制第一类错误(错误地拒绝良品)和第二类错误(错误地接受次品)的概率。

次品率的抽样检测通常采用二项分布进行建模,每个零配件要么合格,要么不合格,完全符合二项分布的特性。基于供应商提供的次品率标称值,可以设定零假设(次品率小于等于标称值)和备择假设(次品率大于标称值),并采用z检验或t检验等统计方法来决定是否拒收整批零配件。

在模型构建方面,首先需要定义这些假设,然后是确定样本量,这一步骤至关重要,以确保检验的功效,即最小化第一类和第二类错误的概率。这可以通过设定错误的容忍界限(例如α=5%,β=10%)和进行功效分析来实现。接着,需要设定决策规则,即根据样本次品率与临界值的比较结果来接受或拒绝零假设。

求解模型时,会计算在给定置信水平下的临界值,如果样本次品率大于此临界值,则拒绝零假设,否则接受。可以通过模拟抽样过程,计算样本次品率,并根据这些数据与临界值比较来确定是否接受或拒绝。这种方法可以为企业提供一个科学且经济有效的抽样检测方案,帮助企业在保证产品质量的同时控制相关成本。

5.1.2模型的准备

针对第一个问题,我们需要制定一个详细的抽样检测计划,以便通过尽可能少的检测次数来确定零配件的次品率是否超过了其标称值。为了实现这一目标,我们将采用假设检验的方法,并选择二项分布模型作为我们的统计模型。

具体来说,我们将首先设定一个零假设H,即零配件的次品率等于或低于其标称值。然后,我们将设定一个备择假设H1,即零配件的次品率超过了其标称值。接下来,我们将根据二项分布的特性,确定一个合适的样本量,以确保我们的检测结果具有统计学上的显著性。

在抽样过程中,我们将随机选择一定数量的零配件进行检测,并记录下其中的次品数量。根据这些数据,我们可以计算出次品率的实际观测值。然后,我们将使用二项分布的概率质量函数PMF来计算在零假设成立的情况下,观测到当前次品率或更极端情况的概率,即p值。

如果计算出的p值小于我们预先设定的显著性水平(例如0.05),则拒绝零假设,接受备择假设,认为零配件的次品率确实超过了标称值。反之,如果p值大于显著性水平,则无法拒绝零假设,认为没有足够的证据表明零配件的次品率超过了标称值。

通过这种方法,我们可以在保证统计学显著性的前提下,用最少的检测次数来判断零配件的次品率是否超标,从而提高检测效率并降低成本。
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2111017.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

python_使用tkinter建立一个页面的模板

python_使用tkinter建立一个页面的模板 效果如图, 代码如下 """ python设计一下tkinter的布局在最上面排列5个按钮,然后一排4个水平分布的按钮,下面分左右两个图像显示,默认为白色背景为了实现您所描述的Tkinter布局&…

计组 2.Linux上程序的编写与调试

1. 我们之间使用vim创建.c文件,在里面编写完成后按住esc后冒号加wq保存退出 再使用gcc编译.c文件即可 vim test.c gcc test.c2. 这道题对比上一道题多出了编译过程,我们只需要按要求编译即可 gcc -E hello.c -o hello.i # 预处理阶段 gcc -S hello.i…

【超详细】windows Docker安装

关于 Docker 可以把应用以及其依赖都打包到一个容器中,而这个容器的性能开销极低。 Docker 并非是一个通用的容器工具,它依赖于已存在并运行的 Linux 内核环境。Docker Desktop 是 Docker 在 Windows 10 和 macOS 操作系统上的官方安装方式&#xff0c…

opencv实战项目二十一:MediaPipe人体姿态检测

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、MediaPipe是什么?二、MediaPipe使用:三、算法流程:四、效果: 前言 在智能科技不断渗透我们日常生活的今天&…

redis分布式锁和lua脚本

业务场景:多个线程对共同资源的访问:库存超卖/用户重复下单的原因 解决方法一:利用jvm内置锁,将非原子性操作变成原子性操作 Synchronized锁的是对象,对象必须是单例的。锁的是this,代表当前所在的类,这个…

“电轿三巨头”集齐,新车能否后浪拍前浪?

文/王俣祺 导语:纵观全年,要说哪款电车最火,那必然得是小米SU7。小米SU7在今年上半年上市以来,基本垄断了整个国产20万级电轿市场,甚至具备了和称霸电轿市场已久的特斯拉Model 3掰掰手腕的实力。那么,如今的…

Stream插件相关的用法

文章目录 1. 概念介绍2. 使用方法2.1 StreamController2.2 StreamBuilder 3. 示例代码 我们在上一章回中介绍了管理Stream事件流相关的内容,本章回中将介绍如何使用Stream事件流输入输出数据 。闲话休提,言归正传,让我们一起Talk Flutter吧。…

FPGA搭建XDMA中断模式的PCIE通信架构,简单读写测试,提供7套工程源码和技术支持

目录 1、前言工程概述免责声明 2、相关方案推荐我已有的PCIE方案 3、PCIE基础知识4、工程详细设计方案工程设计原理框图XDMA配置及使用XDMA中断模块数据缓存架构用户逻辑Windows版本XDMA驱动安装Linux版本XDMA驱动安装测试应用程序工程源码架构PCIE上板调试注意事项 5、vivado工…

2024年了,软件测试已经饱和了?

这个年头找工作跟找对象一样难,咳咳,工作对象都木有,双重打击5555。 关于今年的就业市场,很多人表示特别惨淡,以往简历一投就有大批企业来联系,今年自己投递一大堆简历出去,可能全部都是已读不…

黑神话悟空现在有哪些结局?黑神话悟空攻略来啦!

结局 1:天命人戴上金箍,继承了大圣意志,成为了新大圣。 最终 Boss:孙悟空:玩家需经历两场遭遇战,‌每场都分为两个阶段。‌ 首战,‌玩家需独自对抗石猴;‌而在第二阶段,‌则要面对两位掌握不同元素力量的…

Nacos注册中心与OpenFeign远程调用

文章目录 一、注册中心原理二、Nacos注册中心三、服务注册四、服务发现五、OpenFeign 一、注册中心原理 在微服务当中必须有两个角色 服务提供者:提供接口供其它微服务访问 服务消费者:调用其它微服务提供的接口 在大型微服务项目中,服务提供…

3600+银行财务数据大全(1954-2022年)

3600银行财务数据,包括农村商业银行、村镇银行、外资银行、民营银行、股份制商业银行、城市商业银行、大型商业银行、农村合作银行、其他商业银行等。共计120个指标,银行基本信息、业务发展、财务指标、信贷资产、员工、负债等数据 一、数据介绍 数据名…

ChatTCP:一款离线TCP数据包分析macOS APP,致力于让分析TCP数据包像看聊天记录一样简单

ChatTCP是一款离线TCP数据包分析macOS APP,致力于让分析TCP数据包像看聊天记录一样简单!已为UI交互方式申请专利,独家聊天会话方式分析TCP数据包,给你不一样的TCP数据包分析体验! ChatTCP是Easy TCP Analysis的离线版本&#xff…

【docker】了解什么是Docker

一、前言 最近,在学习如何部署项目的时候,老是出错误,然后朋友推荐了去学一下docker,然后自己就去学了【尚硅谷】的关于docker的教程视频,学完之后,感觉docker真的强,可以把我们做好的app的进行跨平台、快速…

vue3+ts项目引入vue-codemirror实现yaml代码编辑器

重要提示 重新安装依赖后一定要重启项目!!! 网上搜到的案例拿过来都报错?那应该是插件的版本不一样,先弄清版本!!! 本示例相关版本如下 npm i vue-codemirror6 // 按自己所需的…

QT学习之计算器

网格布局初尝试,快速构建计算器 项目结构: wident.h拖动建立界面,20个button,一个lineedit 布局好后整体网格布局调整,依次给每个案件输入文本,并改objectname方便后期辨识 为了在lineedit显示数字&…

鸿蒙轻内核M核源码分析系列十二 事件Event

往期知识点记录: 鸿蒙(HarmonyOS)应用层开发(北向)知识点汇总 轻内核M核源码分析系列一 数据结构-双向循环链表 轻内核M核源码分析系列二 数据结构-任务就绪队列 鸿蒙轻内核M核源码分析系列三 数据结构-任务排序链表 轻…

电子PCB板老化测试指南

部署到现场的成品 PCBA 应通过多项测试,以确保可靠性和稳定运行。行业标准规定了多种测试方法、性能要求、评估指标,甚至必须使用测试夹具来评估电气行为、耐热循环性、长期热稳定性、承受热冲击的能力等等。 PCB老化测试的目的 PCB 老化测试的目的是收…

【STM32】CAN总线基础入门

CAN总线基础入门 一、CAN简介二、主流通信协议对比三、CAN物理层1、CAN硬件电路2、CAN电平标准3、CAN收发器 – TJA1050(高速CAN)4、CAN物理层特性 四、帧格式1、CAN总线帧格式2、数据帧3、数据帧各部分用途简介4、数据帧的发展历…

详解TensorRT的C++高性能部署以及C++部署Yolo实践

详解TensorRT的C高性能部署 一. ONNX1. ONNX的定位2. ONNX模型格式3. ONNX代码使用实例 二、TensorRT1 引言 三、C部署Yolo模型实例 一. ONNX 1. ONNX的定位 ONNX是一种中间文件格式,用于解决部署的硬件与不同的训练框架特定的模型格式的兼容性问题。 ONNX本身其…