《机器学习》—— PCA降维

news2024/11/13 14:50:22

文章目录

  • 一、PCA降维简单介绍
  • 二、python中实现PCA降维函数的介绍
  • 三、代码实现
  • 四、PCA降维的优缺点

一、PCA降维简单介绍

  • PCA(主成分分析,Principal Component Analysis)是一种常用的数据降维技术。
  • 它通过线性变换将原始数据转换到新的坐标系统中,使得任何投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依此类推。
  • PCA的主要目的是通过保留数据集中对方差贡献最大的特征来降低数据的维度,同时尽可能保留原始数据的信息。
  • PCA降维的步骤
    • 1、标准化数据
      由于PCA对数据的尺度非常敏感,因此在进行PCA之前,通常需要先将数据标准化(也称为归一化),即每个特征减去其均值并除以其标准差,使得每个特征的均值为0,方差为1。
    • 2、计算协方差矩阵
      协方差矩阵衡量的是数据集中各个特征之间的相关性。对于n维数据,其协方差矩阵是一个n×n的矩阵,其中每个元素C ij是第i个特征和第j个特征的协方差。
    • 3、计算协方差矩阵的特征值和特征向量
      特征值表示了每个主成分在数据集中的方差贡献率,而特征向量则定义了新的坐标轴的方向。
    • 4、选择主成分
      根据特征值的大小,选择前k个最大的特征值对应的特征向量。这些特征向量将构成新的特征空间,其中k是降维后的维度数。
    • 5、将原始数据投影到新的特征空间
      使用选定的特征向量作为基,将原始数据投影到新的特征空间,得到降维后的数据。

二、python中实现PCA降维函数的介绍

  • 在Python中,使用scikit-learn库来进行PCA分析,其中PCA是通过PCA类来实现的

  • PCA类有以下参数(默认值)

    PCA(n_components=None, copy=True, whiten=False, 
    	svd_solver=’auto’, tol=0.0, 
    	iterated_power=’auto’, random_state=None)
    
  • 重要参数的介绍:

  • n_components:这个参数可以帮我们指定希望PCA降维后的特征维度数目。

    • 如果为整数,表示要降维到的目标,比如十维的数据,指定n_components=5,表示将十维数据降维到五维;
    • 如果为小数,表示累计方差百分比。
  • copy : bool类型,True或者False,缺省时默认为True。 表示是否在运行算法时,将原始训练数据复制一份。

    • 若为True,则运行PCA算法后,原始训练数据的值不会有任何改变,因为是在原始数据的副本上进行运算;
    • 若为False,则运行PCA算法后,原始训练数据的值会改,因为是在原始数据上进行降维计算。
  • whiten:判断是否进行白化。

    • 所谓白化,就是对降维后的数据的每个特征进行归一化,让方差都为1对于PCA降维本身来说,一般不需要白化。如果你PCA降维后有后续的数据处理动作,可以考虑白化。默认值是False,即不进行白化。
  • svd_solver:即指定奇异值分解SVD的方法,由于特征分解是奇异值分解SVD的一个特例,一般的PCA库都是基于SVD实现的。有4个可以选择的值:{‘auto’, ‘full’, ‘arpack’, ‘randomized’}。

    • randomized一般适用于数据量大,数据维度多同时主成分数目比例又较低的PCA降维,它使用了一些加快SVD的随机算法。
    • full则是传统意义上的SVD,使用了scipy库对应的实现。
    • arpack和randomized的适用场景类似,区别是randomized使用的是scikit-learn自己的SVD实现,而arpack直接使用了scipy库的sparse SVD实现。
    • auto是默认值,即PCA类会自己去在前面讲到的三种算法里面去权衡,选择一个合适的SVD算法来降维。一般来说,使用默认值就够了。
  • 一些返回值属性

    • components_:一个形状为(n_components, n_features)的NumPy数组,包含了定义主成分的特征向量(即每个主成分是原始特征的哪个线性组合)。
    • explained_variance_:一个形状为(n_components,)的NumPy数组,包含了每个主成分解释的方差值。方差值越大,则说明越是重要的主成分。
    • explained_variance_ratio_:一个形状为(n_components,)的NumPy数组,包含了每个主成分解释的方差占总方差的比例。

三、代码实现

  • 数据集介绍

    • 此数据集是一份少量的(60+)鸢尾花数据,前四列为特征数据,最后一列为标签数据
    • 部分数据如下所示
      在这里插入图片描述
  • 此数据中有四个特征,代表的有4个维度,下面将通过PCA降维方法将其降维至2维,并将降维后的特征数据划分为新的数据集,传入到逻辑回归模型中进行训练与测试

  • 并将没有进行PCA降维处理的原数据也传入到回归模型中,得出结果,进行比较

    from sklearn.decomposition import PCA
    import pandas as pd
    
    # 读取数据
    data = pd.read_excel('hua.xlsx')
    
    # 数据划分
    x = data.iloc[:, :-1]  # 训练数据
    y = data.iloc[:, -1]  # 标签数据
    
    # 实例化PCA对象
    pca = PCA(n_components=2)
    pca.fit(x)
    
    print('特征所占百分比:{}'.format(sum(pca.explained_variance_ratio_)))
    print('每个主成分的方差值:{}'.format(pca.explained_variance_))
    
    new_x = pca.transform(x)
    print('PCA降维后数据:')
    print(new_x)
    
    # 切分降维后的数据集
    from sklearn.model_selection import train_test_split
    
    x_train_pca, x_test_pca, y_train_pca, y_test_pca = \
        train_test_split(new_x, y, test_size=0.2, random_state=0)
    
    from sklearn.linear_model import LogisticRegression
    
    # 实例一个逻辑回归模型
    classifier_pca = LogisticRegression()
    classifier_pca.fit(x_train_pca, y_train_pca)  # 训练数据
    
    from sklearn import metrics
    
    # accuracy 值
    train_score_pca = classifier_pca.score(x_train_pca, y_train_pca)
    print("训练集数据测试的accuracy值为:{}".format(train_score_pca))
    # 训练集数据评估指标报告
    train_predict_pca = classifier_pca.predict(x_train_pca)
    print("训练集数据评估指标报告")
    print(metrics.classification_report(y_train_pca, train_predict_pca))
    
    test_score_pca = classifier_pca.score(x_test_pca, y_test_pca)
    print("测试集数据测试的accuracy值为:{}".format(test_score_pca))
    # 测试集数据评估指标报告
    test_predict_pca = classifier_pca.predict(x_test_pca)
    print("测试集数据评估指标报告")
    print(metrics.classification_report(y_test_pca, test_predict_pca))
    
    print("**************************************************************")
    
    # 切分原始数据集
    x_train, x_test, y_train, y_test = \
        train_test_split(x, y, test_size=0.2, random_state=0)
    
    classifier = LogisticRegression()
    classifier.fit(x_train, y_train)
    
    # accuracy 值
    train_score = classifier.score(x_train, y_train)
    print("训练集数据测试的accuracy值为:{}".format(train_score))
    # 训练集数据评估指标报告
    train_predict = classifier.predict(x_train)
    print("训练集数据评估指标报告")
    print(metrics.classification_report(y_train, train_predict))
    
    test_score = classifier.score(x_test, y_test)
    print("测试集数据测试的accuracy值为:{}".format(train_score))
    # 测试集数据评估指标报告
    test_predict = classifier.predict(x_test)
    print("测试集数据评估指标报告")
    print(metrics.classification_report(y_test, test_predict))
    
  • 结果如下
    在这里插入图片描述
    在这里插入图片描述

  • 由于此数据集的数据量太少,降维前后的模型训练结果基本差不多,在大的数据集中对比最终的结果可能会更加明显

四、PCA降维的优缺点

  • 优点:
    • 1.计算方法简单,容易实现。
    • 2.可以减少指标筛选的工作量。
    • 3.消除变量间的多重共线性。
    • 4.在一定程度上能减少噪声数据。
  • 缺点:
    • 1.特征必须是连续型变量(可以在一定范围内连续取值的变量)。
    • 2.无法解释降维后的数据是什么。
    • 3.有时候贡献率小的成分有可能更重要,但是会被降维的时候舍弃掉。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2108377.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

持久化分析

目录 介绍步骤WMI持久化分析注册表映像劫持IFEO持久化 介绍 1、WMI 的全称是 Windows Management Instrumentation,即 Windows 管理规范,在 Windows 操作系统中,随着 WMI 技术的引入并在之后随着时间的推移而过时,它作为一项功能…

Linux【6】系统

时间日期 date日期 cal——当月日历 cal -y 今年的日历 磁盘占用df du df 剩余空间 du 目录下的文件大小 进程ps ps aux a——其他用户 u——详细状态 x——没有控制终端 只看CPU占用高的进程top kill pid代号 ——杀死程序 通配符(简略版) …

每日OJ_牛客_解读密码(简单模拟)

目录 牛客_解读密码(简单模拟) 解析代码 牛客_解读密码(简单模拟) 解读密码__牛客网 解析代码 题目意思:给定字符串中包含其他符合一级数字,将字符串中数字解析出来。 解析步骤: 题目明确…

LabVIEW声发射数据采集系统开发

声发射(Acoustic Emission, AE)技术是材料检测中的一种无损检测方法,广泛用于结构健康监测。本文将介绍一个基于LabVIEW的声发射数据采集系统的真实案例,涵盖工作原理、开发流程、硬件选型、注意事项及难点。该系统通过LabVIEW平台…

LlamaIndex 使用 RouterOutputAgentWorkflow

LlamaIndex 中提供了一个 RouterOutputAgentWorkflow 功能,可以集成多个 QueryTool,根据用户的输入判断使用那个 QueryEngine,在做查询的时候,可以从不同的数据源进行查询,例如确定的数据从数据库查询,如果…

2024年装电脑,就认准这几个型号,能避坑!

前言 小伙伴是否都会觉得,自己又不懂电脑,跑电脑城去装机又怕被坑。这时候只能找熟人给装机,至少……熟人应该不会坑自己吧?! 这不,小白电脑技术的抖音评论区上就有这么一条评论: 这哥们找一熟…

最新HTML5中的视频和音频讲解

第6章 HTML5中的视频和音频 H5新增video,audio,播放视频和音频,统称为多媒体元素。 6.1 多媒体元素基本属性 video用于电影文件和其他视频流的播放。 audio用于音乐文件和其他音频流的播放。 video的属性 src:文件路径,本地或者网络上。…

Android经典实战之SurfaceView原理和实践

本文首发于公众号“AntDream”,欢迎微信搜索“AntDream”或扫描文章底部二维码关注,和我一起每天进步一点点 SurfaceView 是一个非常强大但也相对复杂的 UI 组件,特别适用于对性能要求较高的绘制任务,如视频播放、游戏等。 1. Su…

Java 方法的定义

目录 1.Java的方法类似于其他语言的函数,是一段用来完成特定功能的代码片段。 2.方法包含一个方法头和方法体,下面是一个方法的所有部分: (1)修饰符:可选。告诉编译器如何调用该方法,定义了该…

Java笔试面试题AI答之JDBC(2)

文章目录 7. 列出Java应该遵循的JDBC最佳实践?8. Statement与PreparedStatement的区别,什么是SQL注入,如何防止SQL注入Statement与PreparedStatement的区别什么是SQL注入如何防止SQL注入 9. JDBC如何连接数据库?1. 加载JDBC驱动程序2. 建立数…

Python复杂网络社区检测:并行谱聚类算法设计与多种算法应用实战研究

原文链接:https://tecdat.cn/?p37574 分析师:Leiyun Liao 在当今的网络科学领域,复杂网络中的社区检测成为了一个至关重要的研究课题。随着信息技术的飞速发展,各种大规模网络不断涌现,如社交网络、生物网络等。准确地…

chapter12-异常(Exception)——(作业)——day15

目录 457-异常课后作业 458-异常课后作业2 457-异常课后作业 package chapter12.exception.homework;/*** author LuHan* version 1.0*/ public class Homework01 {public static void main(String[] args) {try {if(args.length!2){throw new ArrayIndexOutOfBoundsException…

立创商城9.9免邮活动开始啦!

从9月2日起,立创商城推出免邮活动,每月在领券中心>精选专区领取免邮券,即可享受满9.9元使用免邮券服务。 未注册的用户,可扫描下方二维码注册哦~

2024高教社杯数学建模国赛ABCDE题选题建议+初步分析

提示&#xff1a;DS C君认为的难度&#xff1a;C<B<A&#xff0c;开放度&#xff1a;A<C<B 。 D、E题推荐选E题&#xff0c;后续会直接更新E论文和思路&#xff0c;不在这里进行选题分析&#xff0c;以下为A、B、C题选题建议及初步分析 A题&#xff1a;“板凳龙”…

AI技术的新篇章:GPT Next、Gemini 2、GPT-6 和千代理人探索虚拟世界

在AI技术飞速发展的今天&#xff0c;许多令人兴奋的突破正逐渐进入公众视野。最近的新闻显示&#xff0c;诸如OpenAI的GPT Next、Google的Gemini 2.0、GPT-6以及模拟虚拟世界中的1000个AI代理人等前沿项目&#xff0c;标志着人工智能领域即将进入一个全新阶段。本文将深入探讨这…

多线程的简单了解——多客户端链接

在前面的学习中发现我们的聊天室功能只能有一个客户端接入服务端中&#xff0c;第二个客户端想要接入服务端中必须要等待第一个客户端输入结束才能接入。 这很明显不符合实际应用的开发&#xff0c;现在我们就来学习Java中一个重要的知识&#xff0c;多线程来解决这个问题。我们…

内存管理篇-22 高端内存和低端内存的分界线

这节课讲的主是为了区分低端内存和高端内存的是如何区分的&#xff1f;内核空间的划分是可以配置的。为了查看现象&#xff0c;通过qemu设置物理内存为不同情况。 结论&#xff1a;线性映射区的大小&#xff0c;和page_offset(内核起始地址0x80000000还是0xc0000000)和物理内存…

oracle startup失败,ORA-01078: failure in processing system parameters

SQL> startup ORA-01078: failure in processing system parameters LRM-00109: could not open parameter file /data/oracle/product/11.2.0/db_1/dbs/initorc1.ora 出错的原因可能是&#xff1a;文件名字不正确&#xff0c;文件权限不对&#xff0c;文件不存在&#x…

铁打的程序员轻易“不哭”-我的大模型创业近2年来的感悟

楔子 2022年11月&#xff0c;GPT-3发布那一刻&#xff0c;我被AI的强大能力所震撼&#xff0c;意识到“超级个体”时代的来临。自那时起&#xff0c;我开始全心投入创业&#xff0c;经历了许多苦乐交织的时光。 2023年6月&#xff0c;我尝试将AI应用于智能营销导购&#xff0…

143.布隆过滤器原理以及Go使用示例

文章目录 1. 是什么&#xff1f;2. 干什么&#xff1f;3. 为什么&#xff1f;4. 有什么问题&#xff1f;5. Go使用布隆过滤器单机版(Golang)分布式版(Java) 1. 是什么&#xff1f; 它是一个二进制bit数组&#xff0c;初始为 0 采用位存储数据结构&#xff0c;节省存储空间 1…