考虑一个矩形 ABCD,我们给出了边 AD 和 BC 中点(分别为 p 和 q)的坐标以及它们的长度 L(AD = BC = L)。现在给定参数,我们需要打印 4 个点 A、B、C 和 D 的坐标。
例子:
输入:p = (1, 0)
q = (1, 2)
L = 2
输出:(0,0),(0,2),(2,2),(2,0)
解释:
打印的点形成一个矩形,
满足输入约束。
输入:p = (1, 1)
q = (-1, -1)
L = 2*sqrt(2)
输出:(0,2),(-2,0),(0,-2),(2,0)
从问题陈述中可能出现 3 种情况:
矩形是水平的,即 AD 和 BC 平行于 X 轴
矩形是垂直的,即 AD 和 BC 平行于 Y 轴
矩形与轴线呈一定角度倾斜
前两种情况很简单,使用基本几何学就可以轻松解决。对于第三种情况,我们需要应用一些数学概念来找到点。
为了清楚起见,请考虑上图。我们有 p 和 q 的坐标。因此,我们可以找到 AD 和 BC 的斜率(因为 pq 垂直于 AD)。一旦我们有了 AD 的斜率,我们就可以找到通过 AD 的直线方程。现在我们可以应用距离公式来获得沿 X 轴和 Y 轴的位移。
如果 AD 的斜率 = m,则 m = (px- qx)/(qy- py)
以及沿 X 轴的位移,dx = L/(2*sqrt(1+m*m))
类似地,dy = m*L/(2*sqrt(1+m*m))
现在,我们可以通过简单地加减相应获得的位移来找到 4 个角的坐标。
下面是实现过程:
# Python3 program to find corner points of
# a rectangle using given length and middle
# points.
import math
# Structure to represent a co-ordinate point
class Point:
def __init__(self, a = 0, b = 0):
self.x = a
self.y = b
# This function receives two points and length
# of the side of rectangle and prints the 4
# corner points of the rectangle
def printCorners(p, q, l):
a, b, c, d = Point(), Point(), Point(), Point()
# Horizontal rectangle
if (p.x == q.x):
a.x = p.x - (l / 2.0)
a.y = p.y
d.x = p.x + (l / 2.0)
d.y = p.y
b.x = q.x - (l / 2.0)
b.y = q.y
c.x = q.x + (l / 2.0)
c.y = q.y
# Vertical rectangle
else if (p.y == q.y):
a.y = p.y - (l / 2.0)
a.x = p.x
d.y = p.y + (l / 2.0)
d.x = p.x
b.y = q.y - (l / 2.0)
b.x = q.x
c.y = q.y + (l / 2.0)
c.x = q.x
# Slanted rectangle
else:
# Calculate slope of the side
m = (p.x - q.x) / (q.y - p.y)
# Calculate displacements along axes
dx = (l / math.sqrt(1 + (m * m))) * 0.5
dy = m * dx
a.x = p.x - dx
a.y = p.y - dy
d.x = p.x + dx
d.y = p.y + dy
b.x = q.x - dx
b.y = q.y - dy
c.x = q.x + dx
c.y = q.y + dy
print(int(a.x), ", ", int(a.y), sep = "")
print(int(b.x), ", ", int(b.y), sep = "")
print(int(c.x), ", ", int(c.y), sep = "")
print(int(d.x), ", ", int(d.y), sep = "")
print()
# Driver code
p1 = Point(1, 0)
q1 = Point(1, 2)
printCorners(p1, q1, 2)
p = Point(1, 1)
q = Point(-1, -1)
printCorners(p, q, 2 * math.sqrt(2))
# This code is contributed by shubhamsingh10
输出:
0,0
0、2
2,2
2,0
0、2
-2,0
0、-2
2,0
时间复杂度: O(1)
辅助空间: O(1)