一、目的
由于部分数据类型频率为1s,从而数据规模特别大,因此完整的JSON放在Hive中解析起来,尤其是在单机环境下,效率特别慢,无法满足业务需求。
而Flume的拦截器并不能很好的转换数据,因为只能采用Java方式,从Kafka的主题A中采集数据,并解析字段,然后写入到放在Kafka主题B中
二 、原始数据格式
JSON格式比较正常,对象中包含数组
{
"deviceNo": "39",
"sourceDeviceType": null,
"sn": null,
"model": null,
"createTime": "2024-09-03 14:10:00",
"data": {
"cycle": 300,
"evaluationList": [{
"laneNo": 1,
"laneType": null,
"volume": 3,
"queueLenMax": 11.43,
"sampleNum": 0,
"stopAvg": 0.54,
"delayAvg": 0.0,
"passRate": 0.0,
"travelDist": 140.0,
"travelTimeAvg": 0.0
},
{
"laneNo": 2,
"laneType": null,
"volume": 7,
"queueLenMax": 23.18,
"sampleNum": 0,
"stopAvg": 0.47,
"delayAvg": 10.57,
"passRate": 0.0,
"travelDist": 140.0,
"travelTimeAvg": 0.0
},
{
"laneNo": 3,
"laneType": null,
"volume": 9,
"queueLenMax": 11.54,
"sampleNum": 0,
"stopAvg": 0.18,
"delayAvg": 9.67,
"passRate": 0.0,
"travelDist": 140.0,
"travelTimeAvg": 0.0
},
{
"laneNo": 4,
"laneType": null,
"volume": 6,
"queueLenMax": 11.36,
"sampleNum": 0,
"stopAvg": 0.27,
"delayAvg": 6.83,
"passRate": 0.0,
"travelDist": 140.0,
"travelTimeAvg": 0.0
}]
}
}
三、Java代码
package com.kgc; import com.fasterxml.jackson.databind.JsonNode; import com.fasterxml.jackson.databind.ObjectMapper; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.ProducerConfig; import org.apache.kafka.clients.producer.ProducerRecord; import org.apache.kafka.clients.producer.RecordMetadata; import org.apache.kafka.common.serialization.StringDeserializer; import org.apache.kafka.common.serialization.StringSerializer; import java.time.Duration; import java.util.Collections; import java.util.Properties; public class KafkaKafkaEvaluation { // 添加 Kafka Producer 配置 private static Properties producerProps() { Properties props = new Properties(); props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.0.70:9092"); props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class); props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class); props.put(ProducerConfig.ACKS_CONFIG, "-1"); props.put(ProducerConfig.RETRIES_CONFIG, "3"); props.put(ProducerConfig.BATCH_SIZE_CONFIG, "16384"); props.put(ProducerConfig.LINGER_MS_CONFIG, "1"); props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, "33554432"); return props; } public static void main(String[] args) { Properties prop = new Properties(); prop.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.0.70:9092"); prop.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class); prop.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class); prop.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false"); prop.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000"); prop.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest"); // 每一个消费,都要定义不同的Group_ID prop.put(ConsumerConfig.GROUP_ID_CONFIG, "evaluation_group"); KafkaConsumer<String, String> consumer = new KafkaConsumer<>(prop); consumer.subscribe(Collections.singleton("topic_internal_data_evaluation")); ObjectMapper mapper = new ObjectMapper(); // 初始化 Kafka Producer KafkaProducer<String, String> producer = new KafkaProducer<>(producerProps()); while (true) { ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000)); for (ConsumerRecord<String, String> record : records) { try { JsonNode rootNode = mapper.readTree(record.value()); System.out.println("原始数据"+rootNode); String device_no = rootNode.get("deviceNo").asText(); String source_device_type = rootNode.get("sourceDeviceType").asText(); String sn = rootNode.get("sn").asText(); String model = rootNode.get("model").asText(); String create_time = rootNode.get("createTime").asText(); String cycle = rootNode.get("data").get("cycle").asText(); JsonNode evaluationList = rootNode.get("data").get("evaluationList"); for (JsonNode evaluationItem : evaluationList) { String lane_no = evaluationItem.get("laneNo").asText(); String lane_type = evaluationItem.get("laneType").asText(); String volume = evaluationItem.get("volume").asText(); String queue_len_max = evaluationItem.get("queueLenMax").asText(); String sample_num = evaluationItem.get("sampleNum").asText(); String stop_avg = evaluationItem.get("stopAvg").asText(); String delay_avg = evaluationItem.get("delayAvg").asText(); String pass_rate = evaluationItem.get("passRate").asText(); String travel_dist = evaluationItem.get("travelDist").asText(); String travel_time_avg = evaluationItem.get("travelTimeAvg").asText(); String outputLine = String.format("%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s", device_no, source_device_type, sn, model, create_time, cycle,lane_no, lane_type, volume,queue_len_max,sample_num,stop_avg,delay_avg,pass_rate,travel_dist,travel_time_avg); // 发送数据到 Kafka ProducerRecord<String, String> producerRecord = new ProducerRecord<>("topic_db_data_evaluation", record.key(), outputLine); producer.send(producerRecord, (RecordMetadata metadata, Exception e) -> { if (e != null) { e.printStackTrace(); } else { System.out.println("The offset of the record we just sent is: " + metadata.offset()); } }); } } catch (Exception e) { e.printStackTrace(); } } consumer.commitAsync(); } } }
1、服务器IP都是 192.168.0.70
2、消费Kafka主题(数据源):topic_internal_data_evaluation
3、生产Kafka主题(目标源):topic_db_data_evaluation
4、注意:字段顺序与ODS层表结构字段顺序一致!!!
四、开启Kafka主题topic_db_data_evaluation消费者
[root@localhost bin]# ./kafka-console-consumer.sh --bootstrap-server 192.168.0.70:9092 --topic topic_db_data_evaluation --from-beginning
五、运行测试
1、启动项目
2、消费者输出数据
然后再用Flume采集写入HDFS就行了,不过ODS层表结构需要转变
六、ODS层新表结构
create external table if not exists hurys_dc_ods.ods_evaluation( device_no string COMMENT '设备编号', source_device_type string COMMENT '设备类型', sn string COMMENT '设备序列号 ', model string COMMENT '设备型号', create_time timestamp COMMENT '创建时间', cycle int COMMENT '评价数据周期', lane_no int COMMENT '车道编号', lane_type int COMMENT '车道类型 0:渠化1:来向2:出口3:去向4:左弯待转区5:直行待行区6:右转专用道99:未定义车道', volume int COMMENT '车道内过停止线流量(辆)', queue_len_max float COMMENT '车道内最大排队长度(m)', sample_num int COMMENT '评价数据计算样本量', stop_avg float COMMENT '车道内平均停车次数(次)', delay_avg float COMMENT '车道内平均延误时间(s)', pass_rate float COMMENT '车道内一次通过率', travel_dist float COMMENT '车道内检测行程距离(m)', travel_time_avg float COMMENT '车道内平均行程时间' ) comment '评价数据外部表——静态分区' partitioned by (day string) row format delimited fields terminated by ',' stored as SequenceFile ;
七、Flume采集配置文件
八、运行Flume任务,检查HDFS文件、以及ODS表数据
--刷新表分区 msck repair table ods_evaluation; --查看表分区 show partitions hurys_dc_ods.ods_evaluation; --查看表数据 select * from hurys_dc_ods.ods_evaluation where day='2024-09-03';
搞定,这样就不需要在Hive中解析JSON数据了!!!