理论基础
什么是动态规划
动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。
所以动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的,
在贪心算法理论基础中我举了一个背包问题的例子。
例如:有 N 件物品和一个最多能背重量为 W 的背包。第 i 件物品的重量是 weight[i],得到的价值是 value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。
动态规划中 dp[j] 是由 dp[j-weight[i]] 推导出来的,然后取 max(dp[j], dp[j - weight[i]] + value[i])。
但如果是贪心呢,每次拿物品选一个最大的或者最小的就完事了,和上一个状态没有关系。
所以贪心解决不了动态规划的问题。
其实大家也不用死扣动规和贪心的理论区别,后面做做题目自然就知道了。
而且很多讲解动态规划的文章都会讲最优子结构啊和重叠子问题啊这些,这些东西都是教科书的上定义,晦涩难懂而且不实用。
大家知道动规是由前一个状态推导出来的,而贪心是局部直接选最优的,对于刷题来说就够用了。
动态规划的解题步骤
做动规题目的时候,很多同学会陷入一个误区,就是以为把状态转移公式背下来,照葫芦画瓢改改,就开始写代码,甚至把题目AC之后,都不太清楚 dp[i] 表示的是什么。
这就是一种朦胧的状态,然后就把题给过了,遇到稍稍难一点的,可能直接就不会了,然后看题解,然后继续照葫芦画瓢陷入这种恶性循环中。
状态转移公式(递推公式)是很重要,但动规不仅仅只有递推公式。
对于动态规划问题,我将拆解为如下五步曲,这五步都搞清楚了,才能说把动态规划真的掌握了!
- 确定 dp 数组(dp table)以及下标的含义
- 确定递推公式
- dp数组如何初始化
- 确定遍历顺序
- 举例推导dp数组
一些同学可能想为什么要先确定递推公式,然后在考虑初始化呢?
因为一些情况是递推公式决定了dp数组要如何初始化!
后面的讲解中我都是围绕着这五点来进行讲解。
可能刷过动态规划题目的同学可能都知道递推公式的重要性,感觉确定了递推公式这道题目就解出来了。
其实 确定递推公式 仅仅是解题里的一步而已!
一些同学知道递推公式,但搞不清楚 dp 数组应该如何初始化,或者正确的遍历顺序,以至于记下来公式,但写的程序怎么改都通过不了。
动态规划应该如何debug
相信动规的题目,很大部分同学都是这样做的。
看一下题解,感觉看懂了,然后照葫芦画瓢,如果能正好画对了,万事大吉,一旦要是没通过,就怎么改都通过不了,对 dp数组的初始化,递推公式,遍历顺序,处于一种黑盒的理解状态。
写动规题目,代码出问题很正常!
找问题的最好方式就是把dp数组打印出来,看看究竟是不是按照自己思路推导的!
一些同学对于dp的学习是黑盒的状态,就是不清楚dp数组的含义,不懂为什么这么初始化,递推公式背下来了,遍历顺序靠习惯就是这么写的,然后一鼓作气写出代码,如果代码能通过万事大吉,通过不了的话就凭感觉改一改。
这是一个很不好的习惯!
做动规的题目,写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果。
然后再写代码,如果代码没通过就打印dp数组,看看是不是和自己预先推导的哪里不一样。
如果打印出来和自己预先模拟推导是一样的,那么就是自己的递归公式、初始化或者遍历顺序有问题了。
如果和自己预先模拟推导的不一样,那么就是代码实现细节有问题。
这样才是一个完整的思考过程,而不是一旦代码出问题,就毫无头绪的东改改西改改,最后过不了,或者说是稀里糊涂的过了。
这也是我为什么在动规五步曲里强调推导dp数组的重要性。
如果以上自己都做到了,基本上这道题目也就解决了,或者更清晰的知道自己究竟是哪一点不明白,是状态转移不明白,还是实现代码不知道该怎么写,还是不理解遍历 dp 数组的顺序。
509. 斐波那契数
力扣题目链接(opens new window)
斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1 给你n ,请计算 F(n) 。
示例 1:
- 输入:2
- 输出:1
- 解释:F(2) = F(1) + F(0) = 1 + 0 = 1
示例 2:
- 输入:3
- 输出:2
- 解释:F(3) = F(2) + F(1) = 1 + 1 = 2
示例 3:
- 输入:4
- 输出:3
- 解释:F(4) = F(3) + F(2) = 2 + 1 = 3
提示:
- 0 <= n <= 30
斐波那契数列大家应该非常熟悉不过了,非常适合作为动规第一道题目来练练手。
因为这道题目比较简单,可能一些同学并不需要做什么分析,直接顺手一写就过了。
刚好可以通过这道题目让大家可以初步认识到,按照动规五部曲是如何解题的。
对于动规,如果没有方法论的话,可能简单题目可以顺手一写就过,难一点就不知道如何下手了。
动态规划
动规五部曲:
这里我们要用一个一维 dp 数组来保存递归的结果
-
确定dp数组以及下标的含义
dp[i] 的定义为:第 i 个数的斐波那契数值是 dp[i]
-
确定递推公式
为什么这是一道非常简单的入门题目呢?
因为题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];
-
dp数组如何初始化
题目中把如何初始化也直接给我们了,如下:
dp[0] = 0;
dp[1] = 1;
-
确定遍历顺序
从递归公式 dp[i] = dp[i - 1] + dp[i - 2] 中可以看出,dp[i] 是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的
-
举例推导dp数组
按照这个递推公式 dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当 N 为 10 的时候,dp数组应该是如下的数列:
0 1 1 2 3 5 8 13 21 34 55
如果代码写出来,发现结果不对,就把 dp 数组打印出来看看和我们推导的数列是不是一致的。
以上我们用动规的方法分析完了,Java 代码如下:
class Solution {
public int fib(int n) {
if (n < 2) return n;
int a = 0, b = 1, c = 0;
for (int i = 1; i < n; i++) {
c = a + b;
a = b;
b = c;
}
return c;
}
}
- 时间复杂度:O(n)
- 空间复杂度:O(1)
当然可以发现,我们只需要维护两个数值就可以了,不需要记录整个序列。
递归解法
本题还可以使用递归解法来做
代码如下:
class Solution {
public int fib(int n) {
if (n < 2) return n;
return fib(n - 1) + fib(n - 2);
}
};
70. 爬楼梯
力扣题目链接(opens new window)
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
- 输入: 2
- 输出: 2
- 解释: 有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
示例 2:
- 输入: 3
- 输出: 3
- 解释: 有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
本题大家如果没有接触过的话,会感觉比较难,多举几个例子,就可以发现其规律。
爬到第一层楼梯有一种方法,爬到二层楼梯有两种方法。
那么第一层楼梯再跨两步就到第三层 ,第二层楼梯再跨一步就到第三层。
所以到第三层楼梯的状态可以由第二层楼梯 和 到第一层楼梯状态推导出来,那么就可以想到动态规划了。
我们来分析一下,动规五部曲:
定义一个一维数组来记录不同楼层的状态
-
确定dp数组以及下标的含义
dp[i]: 爬到第 i 层楼梯,有 dp[i] 种方法
-
确定递推公式
如何可以推出 dp[i] 呢 ?
从 dp[i] 的定义可以看出,dp[i] 可以有两个方向推出来。
首先是 dp[i - 1],上 i-1 层楼梯,有 dp[i - 1] 种方法,那么再一步跳一个台阶不就是 dp[i] 了么。
还有就是dp[i - 2],上 i-2 层楼梯,有 dp[i - 2] 种方法,那么再一步跳两个台阶不就是 dp[i] 了么。
那么 dp[i] 就是 dp[i - 1] 与 dp[i - 2] 之和!
所以 dp[i] = dp[i - 1] + dp[i - 2] 。
在推导 dp[i] 的时候,一定要时刻想着 dp[i] 的定义,否则容易跑偏。
这体现出确定dp数组以及下标的含义的重要性!
-
dp数组如何初始化
再回顾一下 dp[i] 的定义:爬到第 i 层楼梯,有 dp[i] 种方法。
那么 i 为 0,dp[i] 应该是多少呢,这个可以有很多解释,但基本都是直接奔着答案去解释的。
例如强行安慰自己爬到第 0 层,也有一种方法,什么都不做也就是一种方法即:dp[0] = 1,相当于直接站在楼顶。
但总有点牵强的成分。
那还这么理解呢:我就认为跑到第 0 层,方法就是 0 啊,一步只能走一个台阶或者两个台阶,然而楼层是 0,直接站楼顶上了,就是不用方法,dp[0] 就应该是 0.
其实这么争论下去没有意义,大部分解释说 dp[0] 应该为 1 的理由其实是因为 dp[0]=1 的话在递推的过程中 i 从 2 开始遍历本题就能过,然后就往结果上靠去解释 dp[0] = 1。
从dp数组定义的角度上来说,dp[0] = 0 也能说得通。
需要注意的是:题目中说了 n 是一个正整数,题目根本就没说 n 有为 0 的情况。
所以本题其实就不应该讨论 dp[0] 的初始化!
我相信 dp[1] = 1,dp[2] = 2,这个初始化大家应该都没有争议的。
所以我的原则是:不考虑 dp[0] 如何初始化,只初始化 dp[1] = 1,dp[2] = 2,然后从 i = 3 开始递推,这样才符合 dp[i] 的定义。
-
确定遍历顺序
从递推公式 dp[i] = dp[i - 1] + dp[i - 2] 中可以看出,遍历顺序一定是从前向后遍历的
-
举例推导dp数组
举例当 n 为 5 的时候,dp table(dp数组)应该是这样的
如果代码出问题了,就把 dp table 打印出来,看看究竟是不是和自己推导的一样。
此时大家应该发现了,这不就是斐波那契数列么!
唯一的区别是,没有讨论 dp[0] 应该是什么,因为 dp[0] 在本题没有意义!
以上五部分析完之后,Java 代码如下:
class Solution {
public int climbStairs(int n) {
if(n <= 2) return n;
int a = 1, b = 2, sum = 0;
for(int i = 3; i <= n; i++){
sum = a + b; // f(i - 1) + f(i - 2)
a = b; // 记录f(i - 1),即下一轮的f(i - 2)
b = sum; // 记录f(i),即下一轮的f(i - 1)
}
return b;
}
}
746. 使用最小花费爬楼梯
力扣题目链接
给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
修改之后的题意就比较明确了,题目中说 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯” 也就是相当于 跳到 下标 0 或者 下标 1 是不花费体力的, 从 下标 0 下标1 开始跳就要花费体力了。
-
确定dp数组以及下标的含义
使用动态规划,就要有一个数组来记录状态,本题只需要一个一维数组 dp[i] 就可以了。
dp[i]的定义:到达第 i 台阶所花费的最少体力为 dp[i]。
对于dp数组的定义,大家一定要清晰!
-
确定递推公式
可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]。
dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。
dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。
那么究竟是选从 dp[i - 1] 跳还是从 dp[i - 2] 跳呢?
一定是选最小的,所以 dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])
-
dp 数组如何初始化
看一下递归公式,dp[i] 由 dp[i - 1],dp[i - 2] 推出,既然初始化所有的 dp[i] 是不可能的,那么只初始化dp[0]和dp[1]就够了,其他的最终都是 dp[0]dp[1] 推出。
那么 dp[0] 应该是多少呢? 根据dp数组的定义,到达第 0 台阶所花费的最小体力为 dp[0],那么有同学可能想,那 dp[0] 应该是 cost[0],例如 cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] 的话,dp[0] 就是 cost[0] 应该是1。
题目描述中明确说了 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。” 也就是说 到达 第 0 个台阶是不花费的,但从 第0 个台阶 往上跳的话,需要花费 cost[0]。
所以初始化 dp[0] = 0,dp[1] = 0;
-
确定遍历顺序
最后一步,递归公式有了,初始化有了,如何遍历呢?
本题的遍历顺序其实比较简单,简单到很多同学都忽略了思考这一步直接就把代码写出来了。
因为是模拟台阶,而且 dp[i] 由 dp[i-1]dp[i-2] 推出,所以是从前到后遍历 cost 数组就可以了。
但是稍稍有点难度的动态规划,其遍历顺序并不容易确定下来。 例如:01背包,都知道两个for循环,一个for遍历物品嵌套一个for遍历背包容量,那么为什么不是一个for遍历背包容量嵌套一个for遍历物品呢? 以及在使用一维 dp 数组的时候遍历背包容量为什么要倒序呢?
这些都与遍历顺序息息相关。
-
举例推导dp数组
拿示例2:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] ,来模拟一下dp数组的状态变化,如下:
如果大家代码写出来有问题,就把dp数组打印出来,看看和如上推导的是不是一样的。
以上分析完毕,整体 Java 代码如下:
class Solution {
public int minCostClimbingStairs(int[] cost) {
int len = cost.length;
int[] dp = new int[len + 1];
// 从下标为 0 或下标为 1 的台阶开始,因此支付费用为0
dp[0] = 0;
dp[1] = 0;
// 计算到达每一层台阶的最小费用
for (int i = 2; i <= len; i++) {
dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
}
return dp[len];
}
}
- 时间复杂度:O(n)
- 空间复杂度:O(n)
还可以优化空间复杂度,因为 dp[i] 就是由前两位推出来的,那么也不用dp数组了,Java代码如下:
class Solution {
public int minCostClimbingStairs(int[] cost) {
// 以下三个变量分别表示前两个台阶的最少费用、前一个的、当前的。
int beforeTwoCost = 0, beforeOneCost = 0, currentCost = 0;
// 前两个台阶不需要费用就能上到,因此从下标2开始;因为最后一个台阶需要跨越,所以需要遍历到cost.length
for (int i = 2; i <= cost.length; i ++) {
// 此处遍历的是cost[i - 1],不会越界
currentCost = Math.min(beforeOneCost + cost[i - 1], beforeTwoCost + cost[i - 2]);
beforeTwoCost = beforeOneCost;
beforeOneCost = currentCost;
}
return currentCost;
}
}
- 时间复杂度:O(n)
- 空间复杂度:O(1)