Vision Transformer (ViT) + 代码【详解】

news2024/11/24 7:36:46

文章目录

    • 1、Vision Transformer (ViT) 介绍
    • 2、patch embedding
    • 3、代码
      • 3.1 class embedding + Positional Embedding
      • 3.2 Transformer Encoder
      • 3.3 classifier
      • 3.4 ViT总代码

1、Vision Transformer (ViT) 介绍

VIT论文的摘要如下,谷歌翻译如下:

  • 虽然 Transformer 架构已成为自然语言处理任务的事实标准,但它在计算机视觉领域的应用仍然有限。在 Vision 中,注意力要么与卷积网络结合使用,要么用于替换卷积网络的某些组件,同时保持其整体结构不变。我们表明,这种对 CNN 的依赖是不必要的,直接应用于图像块序列的纯 Transformer 可以在图像分类任务中表现良好。当对大量数据进行预训练并转移到多个中型或小型图像识别基准(mageNet、CIFAR-100、VTAB 等)时,Vision Transformer (ViT) 与最先进的卷积网络相比取得了出色的结果,同时需要更少的计算资源来训练。

在这里插入图片描述

如何把图像应用到transformer当中去?

  • 可以把图片中的每一个像素当作1个token,如下左图是224x224的像素,一共有50176个token,50176个token在计算self-attention时计算量太大,比如在计算相似度时就需要计算 5017 6 2 50176^2 501762次,所以需要对图像做进一步的处理。把224x224的图像分成14x14个patches,每个patches由16x16个像素组成,把每个patches embedding成一个token,这样图片就变成了14x14个tokens。

在这里插入图片描述

如下图中的右半部分,把图片分成9个patch,把每个patch embedding成固定长度的token,除了做相应的位置编码之外,还添加了额外可学习的class embedding,如下图右半部分的 ∗ * 号。在处理每个token和class embedding计算时,并不是如图中的concat,而是对位相加。相加之后再做Transformer Encoder的操作。
在之前的self attention中,输出的个数等于输入的个数,但是在ViT中,只需要输出class embedding的结果,再经过MLP Head(可以当作全连接层)得到图像的类别。

在这里插入图片描述

2、patch embedding

class PatchEmbed(nn.Module):
    """
    2D Image to Patch Embedding
    """
    def __init__(self, img_size=224, patch_size=16, in_c=3, embed_dim=768, norm_layer=None):
        super().__init__()
        img_size = (img_size, img_size)
        patch_size = (patch_size, patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
        self.num_patches = self.grid_size[0] * self.grid_size[1]

        self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        B, C, H, W = x.shape
        assert H == self.img_size[0] and W == self.img_size[1], f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."

        # flatten: [B, C, H, W] -> [B, C, HW]
        # transpose: [B, C, HW] -> [B, HW, C]
        x = self.proj(x).flatten(2).transpose(1, 2)
        x = self.norm(x)
        return x

代码解释:

196表示一共有196个token,768表示为每个patch/token可以用长度为768的特征向量来表示,

在这里插入图片描述

为了方便理解,下面画了一个简单的示意图,

在这里插入图片描述

3、代码

3.1 class embedding + Positional Embedding

下图左边红框框起来的示意图对应的代码是下图右边红框框起来的代码,
x = self.blocks(x)代码讲解在3.2部分,

在这里插入图片描述

3.2 Transformer Encoder

self.blocks是由多个Block组合,Block具体代码如下,

在这里插入图片描述

Block具体代码,

在这里插入图片描述

多头注意力机制的代码,

在这里插入图片描述

MLP的代码,

在这里插入图片描述

3.3 classifier

在这里插入图片描述

3.4 ViT总代码

"""
original code from rwightman:
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
"""
from functools import partial
from collections import OrderedDict

import torch
import torch.nn as nn


def drop_path(x, drop_prob: float = 0., training: bool = False):
    """
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.
    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """
    Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)


class PatchEmbed(nn.Module):
    """
    2D Image to Patch Embedding
    """
    def __init__(self, img_size=224, patch_size=16, in_c=3, embed_dim=768, norm_layer=None):
        super().__init__()
        img_size = (img_size, img_size)
        patch_size = (patch_size, patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
        self.num_patches = self.grid_size[0] * self.grid_size[1]

        self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        B, C, H, W = x.shape
        assert H == self.img_size[0] and W == self.img_size[1], f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."

        # flatten: [B, C, H, W] -> [B, C, HW]
        # transpose: [B, C, HW] -> [B, HW, C]
        x = self.proj(x).flatten(2).transpose(1, 2)
        x = self.norm(x)
        return x


class Attention(nn.Module):
    def __init__(self,
                 dim,   # 输入token的dim
                 num_heads=8,
                 qkv_bias=False,
                 qk_scale=None,
                 attn_drop_ratio=0.,
                 proj_drop_ratio=0.):
        super(Attention, self).__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop_ratio)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop_ratio)

    def forward(self, x):
        # [batch_size, num_patches + 1, total_embed_dim]
        B, N, C = x.shape

        # qkv(): -> [batch_size, num_patches + 1, 3 * total_embed_dim]
        # reshape: -> [batch_size, num_patches + 1, 3, num_heads, embed_dim_per_head]
        # permute: -> [3, batch_size, num_heads, num_patches + 1, embed_dim_per_head]
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        # [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        # transpose: -> [batch_size, num_heads, embed_dim_per_head, num_patches + 1]
        # @: multiply -> [batch_size, num_heads, num_patches + 1, num_patches + 1]
        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        # @: multiply -> [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
        # transpose: -> [batch_size, num_patches + 1, num_heads, embed_dim_per_head]
        # reshape: -> [batch_size, num_patches + 1, total_embed_dim]
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Mlp(nn.Module):
    """
    MLP as used in Vision Transformer, MLP-Mixer and related networks
    """
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Block(nn.Module):
    def __init__(self,
                 dim,
                 num_heads,
                 mlp_ratio=4.,
                 qkv_bias=False,
                 qk_scale=None,
                 drop_ratio=0.,
                 attn_drop_ratio=0.,
                 drop_path_ratio=0.,
                 act_layer=nn.GELU,
                 norm_layer=nn.LayerNorm):
        super(Block, self).__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
                              attn_drop_ratio=attn_drop_ratio, proj_drop_ratio=drop_ratio)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path_ratio) if drop_path_ratio > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop_ratio)

    def forward(self, x):
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class VisionTransformer(nn.Module):
    def __init__(self, img_size=224, patch_size=16, in_c=3, num_classes=1000,
                 embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True,
                 qk_scale=None, representation_size=None, distilled=False, drop_ratio=0.,
                 attn_drop_ratio=0., drop_path_ratio=0., embed_layer=PatchEmbed, norm_layer=None,
                 act_layer=None):
        """
        Args:
            img_size (int, tuple): input image size
            patch_size (int, tuple): patch size
            in_c (int): number of input channels
            num_classes (int): number of classes for classification head
            embed_dim (int): embedding dimension
            depth (int): depth of transformer
            num_heads (int): number of attention heads
            mlp_ratio (int): ratio of mlp hidden dim to embedding dim
            qkv_bias (bool): enable bias for qkv if True
            qk_scale (float): override default qk scale of head_dim ** -0.5 if set
            representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
            distilled (bool): model includes a distillation token and head as in DeiT models
            drop_ratio (float): dropout rate
            attn_drop_ratio (float): attention dropout rate
            drop_path_ratio (float): stochastic depth rate
            embed_layer (nn.Module): patch embedding layer
            norm_layer: (nn.Module): normalization layer
        """
        super(VisionTransformer, self).__init__()
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.num_tokens = 2 if distilled else 1
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
        act_layer = act_layer or nn.GELU

        self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_c=in_c, embed_dim=embed_dim)
        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
        self.pos_drop = nn.Dropout(p=drop_ratio)

        dpr = [x.item() for x in torch.linspace(0, drop_path_ratio, depth)]  # stochastic depth decay rule
        self.blocks = nn.Sequential(*[
            Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                  drop_ratio=drop_ratio, attn_drop_ratio=attn_drop_ratio, drop_path_ratio=dpr[i],
                  norm_layer=norm_layer, act_layer=act_layer)
            for i in range(depth)
        ])
        self.norm = norm_layer(embed_dim)

        # Representation layer
        if representation_size and not distilled:
            self.has_logits = True
            self.num_features = representation_size
            self.pre_logits = nn.Sequential(OrderedDict([
                ("fc", nn.Linear(embed_dim, representation_size)),
                ("act", nn.Tanh())
            ]))
        else:
            self.has_logits = False
            self.pre_logits = nn.Identity()

        # Classifier head(s)
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
        self.head_dist = None
        if distilled:
            self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()

        # Weight init
        nn.init.trunc_normal_(self.pos_embed, std=0.02)
        if self.dist_token is not None:
            nn.init.trunc_normal_(self.dist_token, std=0.02)

        nn.init.trunc_normal_(self.cls_token, std=0.02)
        self.apply(_init_vit_weights)

    def forward_features(self, x):
        # [B, C, H, W] -> [B, num_patches, embed_dim]
        x = self.patch_embed(x)  # [B, 196, 768]
        # [1, 1, 768] -> [B, 1, 768]
        cls_token = self.cls_token.expand(x.shape[0], -1, -1)
        if self.dist_token is None:
            x = torch.cat((cls_token, x), dim=1)  # [B, 197, 768]
        else:
            x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1)

        x = self.pos_drop(x + self.pos_embed)
        x = self.blocks(x)
        x = self.norm(x)
        if self.dist_token is None:
            return self.pre_logits(x[:, 0])
        else:
            return x[:, 0], x[:, 1]

    def forward(self, x):
        x = self.forward_features(x)
        if self.head_dist is not None:
            x, x_dist = self.head(x[0]), self.head_dist(x[1])
            if self.training and not torch.jit.is_scripting():
                # during inference, return the average of both classifier predictions
                return x, x_dist
            else:
                return (x + x_dist) / 2
        else:
            x = self.head(x)
        return x


def _init_vit_weights(m):
    """
    ViT weight initialization
    :param m: module
    """
    if isinstance(m, nn.Linear):
        nn.init.trunc_normal_(m.weight, std=.01)
        if m.bias is not None:
            nn.init.zeros_(m.bias)
    elif isinstance(m, nn.Conv2d):
        nn.init.kaiming_normal_(m.weight, mode="fan_out")
        if m.bias is not None:
            nn.init.zeros_(m.bias)
    elif isinstance(m, nn.LayerNorm):
        nn.init.zeros_(m.bias)
        nn.init.ones_(m.weight)


def vit_base_patch16_224(num_classes: int = 1000):
    """
    ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    链接: https://pan.baidu.com/s/1zqb08naP0RPqqfSXfkB2EA  密码: eu9f
    """
    model = VisionTransformer(img_size=224,
                              patch_size=16,
                              embed_dim=768,
                              depth=12,
                              num_heads=12,
                              representation_size=None,
                              num_classes=num_classes)
    return model


def vit_base_patch16_224_in21k(num_classes: int = 21843, has_logits: bool = True):
    """
    ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth
    """
    model = VisionTransformer(img_size=224,
                              patch_size=16,
                              embed_dim=768,
                              depth=12,
                              num_heads=12,
                              representation_size=768 if has_logits else None,
                              num_classes=num_classes)
    return model


def vit_base_patch32_224(num_classes: int = 1000):
    """
    ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    链接: https://pan.baidu.com/s/1hCv0U8pQomwAtHBYc4hmZg  密码: s5hl
    """
    model = VisionTransformer(img_size=224,
                              patch_size=32,
                              embed_dim=768,
                              depth=12,
                              num_heads=12,
                              representation_size=None,
                              num_classes=num_classes)
    return model


def vit_base_patch32_224_in21k(num_classes: int = 21843, has_logits: bool = True):
    """
    ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch32_224_in21k-8db57226.pth
    """
    model = VisionTransformer(img_size=224,
                              patch_size=32,
                              embed_dim=768,
                              depth=12,
                              num_heads=12,
                              representation_size=768 if has_logits else None,
                              num_classes=num_classes)
    return model


def vit_large_patch16_224(num_classes: int = 1000):
    """
    ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    链接: https://pan.baidu.com/s/1cxBgZJJ6qUWPSBNcE4TdRQ  密码: qqt8
    """
    model = VisionTransformer(img_size=224,
                              patch_size=16,
                              embed_dim=1024,
                              depth=24,
                              num_heads=16,
                              representation_size=None,
                              num_classes=num_classes)
    return model


def vit_large_patch16_224_in21k(num_classes: int = 21843, has_logits: bool = True):
    """
    ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch16_224_in21k-606da67d.pth
    """
    model = VisionTransformer(img_size=224,
                              patch_size=16,
                              embed_dim=1024,
                              depth=24,
                              num_heads=16,
                              representation_size=1024 if has_logits else None,
                              num_classes=num_classes)
    return model


def vit_large_patch32_224_in21k(num_classes: int = 21843, has_logits: bool = True):
    """
    ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    weights ported from official Google JAX impl:
    https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth
    """
    model = VisionTransformer(img_size=224,
                              patch_size=32,
                              embed_dim=1024,
                              depth=24,
                              num_heads=16,
                              representation_size=1024 if has_logits else None,
                              num_classes=num_classes)
    return model


def vit_huge_patch14_224_in21k(num_classes: int = 21843, has_logits: bool = True):
    """
    ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.
    NOTE: converted weights not currently available, too large for github release hosting.
    """
    model = VisionTransformer(img_size=224,
                              patch_size=14,
                              embed_dim=1280,
                              depth=32,
                              num_heads=16,
                              representation_size=1280 if has_logits else None,
                              num_classes=num_classes)
    return model

参考:
1、https://65d8gk.axshare.com/?id=hk98lb&p=%E7%BD%91%E7%BB%9C%E7%BB%93%E6%9E%84&g=1&sc=3
2、哔哩哔哩视频
3、https://enzo-miman.github.io/#/2_transformer%E4%B8%8EDETR?id=transformer
4、https://github.com/Enzo-MiMan/cv_related_collections/blob/main/transformer_DETR/vision_transformer/vit_model.py

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2101178.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JVM面试(四)类加载器和双亲委派机制

什么是类加载器? 简单来说的话,是用于实现“类加载动作”的加载器 “通过一个类的全限定名来获取描述该类的二进制字节流”这个动作放到Java虚拟机外部去实现,以便让应用程序自己决定如何去获取所需的类。实现这个动作的代码被称为“类加载器…

Web测试(知识总结)

🍅 点击文末小卡片 ,免费获取软件测试全套资料,资料在手,涨薪更快 随着Internet和Internet/Extranet的快速增长,Web已经对商业、工业、银行、财政、教育、政府和娱乐及我们的工作和生活产生了深远的影响。许多传统的…

代码随想录打卡第10天

232 用队列实现栈 两个栈一个负责入一个负责出。 class MyQueue {Stack<Integer> stackIn;Stack<Integer> stackOut;public MyQueue() {stackInnew Stack<>();stackOut new Stack<>();}public void push(int x) {stackIn.push(x);}public int pop() {…

axure9勾选多个删除,弹框显示多个中继器编号

文本框 情形是删除逗号 文本框内插入数据

分类预测|基于雪消融优化极端梯度提升的数据分类预测Matlab程序SAO-XGBoost 多特征输入多类别输出

分类预测|基于雪消融优化极端梯度提升的数据分类预测Matlab程序SAO-XGBoost 多特征输入多类别输出 文章目录 一、基本原理SAO&#xff08;雪消融智能优化算法&#xff09;回归预测中的应用XGBoost 回归预测基本原理SAO-XGBoost 流程 二、实验结果三、核心代码四、代码获取五、总…

Json数据解析报错 -TAB

表现&#xff1a; n8n 解析服务器的数据 报错 json 解析错误 原理&#xff1a; tab键 在代码中为 string tab \t解决办法&#xff1a;tab键替换4个空格 string tab "\t" tab.replaceAll("\t", " ")问题&#xff1a; tab 键 和 空格 在普…

特殊教育学校自闭症:提供个性化教学,满足孩子需求

在特殊教育领域&#xff0c;针对自闭症儿童的个性化教学已成为一种趋势&#xff0c;旨在通过量身定制的教育方案&#xff0c;最大限度地满足每位孩子的独特需求。星启帆自闭症儿童康复机构&#xff0c;作为广州地区的一颗璀璨明珠&#xff0c;正是这一理念的忠实践行者。 星启帆…

什么叫3d建模渲染?与云渲染农场关系

3D建模渲染行业是一个涉及多个行业和领域的技术过程&#xff0c;它不仅仅是一个特点行业的产物&#xff0c;而是广泛应用于产品设计、工业设计、环境设计、动画、游戏建模和影视CG等多个领域。那么3D建模渲染又与云渲染农场有什么关系呢&#xff0c;一起来简单看看吧。 什么叫3…

音频原始数据PCM

PCM全称是脉冲编码调制数据。PCM数据是未经过压的音频数据&#xff0c;它由模拟信号信号经过采样、编码等步骤抓换成的数字信号。 一、音频基础知识讲解 1.1频率 声音是由震动产生的&#xff0c;所以声音是有频率的&#xff0c;人类可以听到的声音频率大概在20HZ~20KHZ 1.2振…

宠物空气净化器真的有用吗?去浮毛好用的宠物空气净化器推荐

不知不觉我已经养宠五年了&#xff0c;一人两猫作伴的日子充满着幸福&#xff0c;可猫毛的存在偶尔也会让小家出现裂缝。每当换毛季&#xff0c;我的鼻子就率先作出反应&#xff0c;瘙痒加上止不住喷嚏都在反映着不佳的空气质量。这都是因为猫咪疯狂掉毛&#xff0c;浮毛上附着…

最新车型库大全|阿里云实现调用API接口

整体请求流程&#xff1a; 介绍&#xff1a; 本次解析通过阿里云云市场的云服务来实现查询车型库大全查询&#xff0c;首先需要选择一家可以提供查询的商品。 [探数API]车型库查询_API专区_云市场-阿里云 步骤1: 选择商品 如图点击免费试用&#xff0c;即可免费申请该接口数…

Power BI Desktop突然自动关闭如何恢复未保存的开发内容?

故事背景 今天有位同事在用Power BI Desktop开发报告的时候&#xff0c;Power BI Desktop软件突然自动关闭时&#xff0c;更让同事郁闷的是开发了两个小时的报告内容还未点击保存&#xff01; 同事非常担心会丢失未保存的报告开发内容&#xff0c;找我寻求帮助如何恢复未保存…

无人机培训校企合作技术详解

随着无人机技术的飞速发展&#xff0c;其在航拍、农业、环境监测、应急救援等多个领域展现出巨大的应用潜力&#xff0c;市场对无人机专业人才的需求也日益增长。因此&#xff0c;加强无人机培训领域的校企合作&#xff0c;成为培养高素质无人机技术人才的重要途径。本文将从合…

企业为什么要使用加密软件?哇!原来有这么多好处呢

1、防止内部泄密&#xff1a;加密软件可以限制文件的访问权限&#xff0c;防止机密文件在公司内部随意流转。 2、访问控制&#xff1a;加密软件可以设定严格的访问控制策略&#xff0c;确保只有授权用户才能访问敏感数据。 3、提升数据恢复能力&#xff1a;通过加密备份数据&…

redis学习(011 实战:黑马点评:优惠券秒杀:redis实现全局唯一ID)

黑马程序员Redis入门到实战教程&#xff0c;深度透析redis底层原理redis分布式锁企业解决方案黑马点评实战项目 总时长 42:48:00 共175P 此文章包含第48p-第p49的内容 文章目录 全局唯一ID编码 全局唯一ID //String did dao.haveKeyId(“deputybedthing”); 这里的主键并没有…

基于微信小程序在线订餐系统

微信小程序在线订餐系统 摘要 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理信息系统的实施在技术上已逐步成熟。本文介绍了微信小程序在线订餐系统的开发全过程。通过分析微信小程序在线订餐系统管理的不足&#xff0c;创建了一个计算机管理微信小程序在线订…

惠中科技光伏清洗剂:科技创新引领绿色清洁新风尚

惠中科技光伏清洗剂&#xff1a;科技创新引领绿色清洁新风尚 在光伏产业蓬勃发展的今天&#xff0c;光伏板的清洁问题日益凸显&#xff0c;成为影响发电效率的关键因素之一。面对传统清洗方法效率低、成本高、环境影响大等痛点&#xff0c;惠中科技以科技创新为驱动&#xff0…

sqlserver 如何收缩+最大化压缩数据库

zihao 直接运行即可 -- 最大化压缩数据库 USE [数据库名称]; -- 这里必须填写库名称 GO EXEC sp_MSforeachtable ALTER TABLE ? REBUILD PARTITION ALL WITH (DATA_COMPRESSION PAGE);;-- 收缩数据库 DBCC SHRINKDATABASE (N数据库名称, 1); -- 这里必须填写库名称 GO

COB超微小间距LED显示屏是什么,它的性价比怎么样,市场大有可为

COB&#xff08;Chip on Board&#xff09;技术最早发源于上世纪60年代&#xff0c;是将LED芯片直接封装在PCB电路板上&#xff0c;并用特种树脂做整体覆盖。COB实现“点” 光源到“面” 光源的转换。点间距有P0.3、P0.4、P0.5、P0.6、P0.7、P0.9、P1.25、P1.538、P1.5625、P1.…

【STM32+HAL库】---- 通用定时器PWM输出实现呼吸灯

硬件开发板&#xff1a;STM32G0B1RET6 软件平台&#xff1a;cubemaxkeilVScode1 新建cubemax工程 1.1 配置系统时钟RCC 1.2 配置定时器 找到LED所对应的引脚PA5&#xff0c;选择TIM2_CH1模式 在TIM2中&#xff0c;时钟源选择内部时钟Internal Clock&#xff0c;通道1选择PWM…