科研里面优化算法都用的多,尤其是各种动物园里面的智能仿生优化算法,但是目前都是MATLAB的代码多,python几乎没有什么包,这次把优化算法系列的代码都从底层手写开始。
需要看以前的优化算法文章可以参考:Python优化算法_阡之尘埃的博客-CSDN博客
黄金正弦算法(Golden Sine Algorithm, GSA)是一种基于自然启发的优化算法,利用黄金比例和正弦函数的特性进行全局搜索和局部开发。该算法结合了黄金比例的分布优势和正弦函数的周期性波动特性,从而在搜索空间中找到最优解。
基本概念
黄金比例(约为1.618)是广泛存在于自然界中的一种数学常数,常用于描述一种最美的比例关系。正弦函数则具有周期性和连续性的特点。这两者的结合构成了GSA的基础,使得该算法在处理复杂优化问题时具有独特的优势。
算法流程
-
初始化:
-
在搜索空间中随机生成一组初始解,这些解被称为个体。
-
适应度评估:
-
计算每个个体的适应度值,根据优化问题的目标函数来评估解的质量。
-
黄金比例分布:
-
利用黄金比例对个体进行分布调整,以确保个体在搜索空间中具有良好的分布特性,避免过度集中。
-
正弦函数更新:
-
利用正弦函数对个体的位置进行更新,引入周期性变化,以增强全局搜索能力。
-
更新公式通常结合黄金比例和正弦函数,如: [ x_{i}(t+1) = x_{i}(t) + \alpha \cdot \sin(\beta \cdot t) ] 其中,( \alpha ) 和 ( \beta ) 是控制参数,( t ) 是迭代次数。
-
局部开发与全局搜索:
-
在正弦更新的基础上,引入局部开发机制,确保个体能够在当前最优解附近进行细致搜索。
-
同时,通过对个体进行适当扰动,增强算法的全局搜索能力,避免早熟收敛。
-
更新最优解:
-
根据适应度信息更新全局最佳解,以指导下一步搜索。
-
迭代:
-
重复上述过程,直到满足停止条件,如达到最大迭代次数或找到满意的解。
优势与应用
黄金正弦算法具有以下优势:
-
良好的分布特性:借助黄金比例,算法能够在搜索空间中实现良好的个体分布,避免过度集中或分散。
-
周期性波动:正弦函数的引入使得算法在全局搜索中具有周期性变化的特点,增强了全局探索能力。
-
简单高效:算法结构相对简单,易于实现,适用于各种连续和离散优化问题。
由于这些优势,黄金正弦算法在工程设计优化、机器学习参数调优、组合优化等领域具有潜在应用价值。与其他优化算法一样,GSA的性能可能受到具体问题特征和控制参数设置的影响,因此在实际应用中需要根据具体情况进行调整和优化。
原理不多介绍了,直接看代码就好。
代码实现
导入包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
import copy
plt.rcParams ['font.sans-serif'] ='SimHei' #显示中文
plt.rcParams ['axes.unicode_minus']=False #显示负号
warnings.filterwarnings('ignore')
plt.rcParams['font.family'] = 'DejaVu Sans'
只给代码不给使用案例就都是钓鱼的。我这里给出代码,也要给使用案例,先采用一些简单的优化算法常用的测试函数。由于都优化算法需要测试函数,我们先都定义好常见的23个函数:
'''F1函数'''
def F1(X):
Results=np.sum(X**2)
return Results
'''F2函数'''
def F2(X):
Results=np.sum(np.abs(X))+np.prod(np.abs(X))
return Results
'''F3函数'''
def F3(X):
dim=X.shape[0]
Results=0
for i in range(dim):
Results=Results+np.sum(X[0:i+1])**2
return Results
'''F4函数'''
def F4(X):
Results=np.max(np.abs(X))
return Results
'''F5函数'''
def F5(X):
dim=X.shape[0]
Results=np.sum(100*(X[1:dim]-(X[0:dim-1]**2))**2+(X[0:dim-1]-1)**2)
return Results
'''F6函数'''
def F6(X):
Results=np.sum(np.abs(X+0.5)**2)
return Results
'''F7函数'''
def F7(X):
dim = X.shape[0]
Temp = np.arange(1,dim+1,1)
Results=np.sum(Temp*(X**4))+np.random.random()
return Results
'''F8函数'''
def F8(X):
Results=np.sum(-X*np.sin(np.sqrt(np.abs(X))))
return Results
'''F9函数'''
def F9(X):
dim=X.shape[0]
Results=np.sum(X**2-10*np.cos(2*np.pi*X))+10*dim
return Results
'''F10函数'''
def F10(X):
dim=X.shape[0]
Results=-20*np.exp(-0.2*np.sqrt(np.sum(X**2)/dim))-np.exp(np.sum(np.cos(2*np.pi*X))/dim)+20+np.exp(1)
return Results
'''F11函数'''
def F11(X):
dim=X.shape[0]
Temp=np.arange(1,dim+1,+1)
Results=np.sum(X**2)/4000-np.prod(np.cos(X/np.sqrt(Temp)))+1
return Results
'''F12函数'''
def Ufun(x,a,k,m):
Results=k*((x-a)**m)*(x>a)+k*((-x-a)**m)*(x<-a)
return Results
def F12(X):
dim=X.shape[0]
Results=(np.pi/dim)*(10*((np.sin(np.pi*(1+(X[0]+1)/4)))**2)+\
np.sum((((X[0:dim-1]+1)/4)**2)*(1+10*((np.sin(np.pi*(1+X[1:dim]+1)/4)))**2)+((X[dim-1]+1)/4)**2))+\
np.sum(Ufun(X,10,100,4))
return Results
'''F13函数'''
def Ufun(x,a,k,m):
Results=k*((x-a)**m)*(x>a)+k*((-x-a)**m)*(x<-a)
return Results
def F13(X):
dim=X.shape[0]
Results=0.1*((np.sin(3*np.pi*X[0]))**2+np.sum((X[0:dim-1]-1)**2*(1+(np.sin(3*np.pi*X[1:dim]))**2))+\
((X[dim-1]-1)**2)*(1+(np.sin(2*np.pi*X[dim-1]))**2))+np.sum(Ufun(X,5,100,4))
return Results
'''F14函数'''
def F14(X):
aS=np.array([[-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32],\
[-32,-32,-32,-32,-32,-16,-16,-16,-16,-16,0,0,0,0,0,16,16,16,16,16,32,32,32,32,32]])
bS=np.zeros(25)
for i in range(25):
bS[i]=np.sum((X-aS[:,i])**6)
Temp=np.arange(1,26,1)
Results=(1/500+np.sum(1/(Temp+bS)))**(-1)
return Results
'''F15函数'''
def F15(X):
aK=np.array([0.1957,0.1947,0.1735,0.16,0.0844,0.0627,0.0456,0.0342,0.0323,0.0235,0.0246])
bK=np.array([0.25,0.5,1,2,4,6,8,10,12,14,16])
bK=1/bK
Results=np.sum((aK-((X[0]*(bK**2+X[1]*bK))/(bK**2+X[2]*bK+X[3])))**2)
return Results
'''F16函数'''
def F16(X):
Results=4*(X[0]**2)-2.1*(X[0]**4)+(X[0]**6)/3+X[0]*X[1]-4*(X[1]**2)+4*(X[1]**4)
return Results
'''F17函数'''
def F17(X):
Results=(X[1]-(X[0]**2)*5.1/(4*(np.pi**2))+(5/np.pi)*X[0]-6)**2+10*(1-1/(8*np.pi))*np.cos(X[0])+10
return Results
'''F18函数'''
def F18(X):
Results=(1+(X[0]+X[1]+1)**2*(19-14*X[0]+3*(X[0]**2)-14*X[1]+6*X[0]*X[1]+3*X[1]**2))*\
(30+(2*X[0]-3*X[1])**2*(18-32*X[0]+12*(X[0]**2)+48*X[1]-36*X[0]*X[1]+27*(X[1]**2)))
return Results
'''F19函数'''
def F19(X):
aH=np.array([[3,10,30],[0.1,10,35],[3,10,30],[0.1,10,35]])
cH=np.array([1,1.2,3,3.2])
pH=np.array([[0.3689,0.117,0.2673],[0.4699,0.4387,0.747],[0.1091,0.8732,0.5547],[0.03815,0.5743,0.8828]])
Results=0
for i in range(4):
Results=Results-cH[i]*np.exp(-(np.sum(aH[i,:]*((X-pH[i,:]))**2)))
return Results
'''F20函数'''
def F20(X):
aH=np.array([[10,3,17,3.5,1.7,8],[0.05,10,17,0.1,8,14],[3,3.5,1.7,10,17,8],[17,8,0.05,10,0.1,14]])
cH=np.array([1,1.2,3,3.2])
pH=np.array([[0.1312,0.1696,0.5569,0.0124,0.8283,0.5886],[0.2329,0.4135,0.8307,0.3736,0.1004,0.9991],\
[0.2348,0.1415,0.3522,0.2883,0.3047,0.6650],[0.4047,0.8828,0.8732,0.5743,0.1091,0.0381]])
Results=0
for i in range(4):
Results=Results-cH[i]*np.exp(-(np.sum(aH[i,:]*((X-pH[i,:]))**2)))
return Results
'''F21函数'''
def F21(X):
aSH=np.array([[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],\
[2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]])
cSH=np.array([0.1,0.2,0.2,0.4,0.4,0.6,0.3,0.7,0.5,0.5])
Results=0
for i in range(5):
Results=Results-(np.dot((X-aSH[i,:]),(X-aSH[i,:]).T)+cSH[i])**(-1)
return Results
'''F22函数'''
def F22(X):
aSH=np.array([[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],\
[2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]])
cSH=np.array([0.1,0.2,0.2,0.4,0.4,0.6,0.3,0.7,0.5,0.5])
Results=0
for i in range(7):
Results=Results-(np.dot((X-aSH[i,:]),(X-aSH[i,:]).T)+cSH[i])**(-1)
return Results
'''F23函数'''
def F23(X):
aSH=np.array([[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],\
[2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]])
cSH=np.array([0.1,0.2,0.2,0.4,0.4,0.6,0.3,0.7,0.5,0.5])
Results=0
for i in range(10):
Results=Results-(np.dot((X-aSH[i,:]),(X-aSH[i,:]).T)+cSH[i])**(-1)
return Results
把他们的参数设置都用字典装起来
Funobject = {'F1': F1,'F2': F2,'F3': F3,'F4': F4,'F5': F5,'F6': F6,'F7': F7,'F8': F8,'F9': F9,'F10': F10,
'F11': F11,'F12': F12,'F13': F13,'F14': F14,'F15': F15,'F16': F16,'F17': F17,
'F18': F18,'F19': F19,'F20': F20,'F21': F21,'F22': F22,'F23': F23}
Funobject.keys()
#维度,搜索区间下界,搜索区间上界,最优值
Fundim={'F1': [30,-100,100],'F2': [30,-10,10],'F3': [30,-100,100],'F4': [30,-10,10],'F5': [30,-30,30],
'F6': [30,-100,100],'F7': [30,-1.28,1.28],'F8': [30,-500,500],'F9':[30,-5.12,5.12],'F10': [30,-32,32],
'F11': [30,-600,600],'F12': [30,-50,50],'F13': [30,-50,50],'F14': [2,-65,65],'F15':[4,-5,5],'F16': [2,-5,5],
'F17':[2,-5,5],'F18': [2,-2,2],'F19': [3,0,1],'F20': [6,0,1],'F21':[4,0,10],'F22': [4,0,10],'F23': [4,0,10]}
Fundim字典里面装的是对应这个函数的 ,维度,搜索区间下界,搜索区间上界。这样写好方便我们去遍历测试所有的函数。
黄金正弦优化算法
终于到了算法的主代码阶段了:
import numpy as np
import math
import copy
def initialization(pop,ub,lb,dim):
''' 种群初始化函数'''
'''
pop:为种群数量
dim:每个个体的维度
ub:每个维度的变量上边界,维度为[dim,1]
lb:为每个维度的变量下边界,维度为[dim,1]
X:为输出的种群,维度[pop,dim]
'''
X = np.zeros([pop,dim]) #声明空间
for i in range(pop):
for j in range(dim):
X[i,j]=(ub[j]-lb[j])*np.random.random()+lb[j] #生成[lb,ub]之间的随机数
return X
def BorderCheck(X,ub,lb,pop,dim):
'''边界检查函数'''
'''
dim:为每个个体数据的维度大小
X:为输入数据,维度为[pop,dim]
ub:为个体数据上边界,维度为[dim,1]
lb:为个体数据下边界,维度为[dim,1]
pop:为种群数量
'''
for i in range(pop):
for j in range(dim):
if X[i,j]>ub[j]:
X[i,j] = ub[j]
elif X[i,j]<lb[j]:
X[i,j] = lb[j]
return X
def CaculateFitness(X,fun):
'''计算种群的所有个体的适应度值'''
pop = X.shape[0]
fitness = np.zeros([pop, 1])
for i in range(pop):
fitness[i] = fun(X[i, :])
return fitness
def SortFitness(Fit):
'''适应度值排序'''
'''
输入为适应度值
输出为排序后的适应度值,和索引
'''
fitness = np.sort(Fit, axis=0)
index = np.argsort(Fit, axis=0)
return fitness,index
def SortPosition(X,index):
'''根据适应度值对位置进行排序'''
Xnew = np.zeros(X.shape)
for i in range(X.shape[0]):
Xnew[i,:] = X[index[i],:]
return Xnew
def GSA(pop,dim,lb,ub,MaxIter,fun):
'''黄金正弦算法'''
'''
输入:
pop:为种群数量
dim:每个个体的维度
ub:为个体上边界信息,维度为[1,dim]
lb:为个体下边界信息,维度为[1,dim]
fun:为适应度函数接口
MaxIter:为最大迭代次数
输出:
GbestScore:最优解对应的适应度值
GbestPositon:最优解
Curve:迭代曲线
'''
a = -math.pi
b = math.pi
gold = (np.sqrt(5)-1)/2 #黄金分割率
x1 = a + (1 - gold)*(b-a) #黄金分割系数x1
x2 = a + gold*(b-a) #黄金分割系数x2
X = initialization(pop,ub,lb,dim) #初始化种群
fitness = CaculateFitness(X,fun) #计算适应度值
fitness,sortIndex = SortFitness(fitness) #对适应度值排序
X = SortPosition(X,sortIndex) #种群排序
GbestScore = copy.copy(fitness[0])
GbestPositon = np.zeros([1,dim])
GbestPositon[0,:] = copy.copy(X[0,:])#记录最优置
Curve = np.zeros([MaxIter,1])
for t in range(MaxIter):
print('第'+str(t)+'次迭代')
#根据位置更新公式,更新位置
for i in range(pop):
r = np.random.random()
r1 = 2*math.pi*r
r2 = r*math.pi
for j in range(dim):
X[i,j] = X[i,j]*np.abs(np.sin(r1)) -r2*np.sin(r1)*np.abs(x1*GbestPositon[0,j] - x2*X[i,j])
X = BorderCheck(X,ub,lb,pop,dim) #边界检测
fitness = CaculateFitness(X,fun) #计算适应度值
#更新黄金分割系数
for i in range(pop):
if fitness[i]<GbestScore: #如果解优于当前最优解
GbestScore = fitness[i]
GbestPositon[0,:] = copy.copy(X[i,:])
b = x2
x2 = x1
x1 = a +(1 - gold)*(b-a)
else:
a = x1
x1 = x2
x2 = a + gold*(b-a)
if x1 == x2:#如果分割系数相同,随机重置分割系数
a = -math.pi*np.random.random()
b = math.pi*np.random.random()
x1 = a+(1-gold)*(b-a)
x2 = a+gold*(b-a)
fitness,sortIndex = SortFitness(fitness) #对适应度值排序
X = SortPosition(X,sortIndex) #种群排序
if(fitness[0]<=GbestScore): #更新全局最优
GbestScore = copy.copy(fitness[0])
GbestPositon[0,:] = copy.copy(X[0,:])
Curve[t] = GbestScore
return GbestScore,GbestPositon,Curve
其实优化算法差不多都是这个流程,边界函数,适应度函数排序,然后寻优过程等等。
OPT_algorithms = {'GSA':GSA}
OPT_algorithms.keys()
简单使用
我们选择F9来测试,先看看F9函数三维的情况:
'''F9绘图函数'''
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
def F9(X):
dim=X.shape[0]
Results=np.sum(X**2-10*np.cos(2*np.pi*X))+10*dim
return Results
def F9Plot():
fig = plt.figure(1) #定义figure
ax = Axes3D(fig) #将figure变为3d
x1=np.arange(-5.12,5.12,0.2) #定义x1,范围为[-5.12,5.12],间隔为0.2
x2=np.arange(-5.12,5.12,0.2) #定义x2,范围为[-5.12,5.12],间隔为0.2
X1,X2=np.meshgrid(x1,x2) #生成网格
nSize = x1.shape[0]
Z=np.zeros([nSize,nSize])
for i in range(nSize):
for j in range(nSize):
X=[X1[i,j],X2[i,j]] #构造F9输入
X=np.array(X) #将格式由list转换为array
Z[i,j]=F9(X) #计算F9的值
#绘制3D曲面
# rstride:行之间的跨度 cstride:列之间的跨度
# rstride:行之间的跨度 cstride:列之间的跨度
# cmap参数可以控制三维曲面的颜色组合
ax.plot_surface(X1, X2, Z, rstride = 1, cstride = 1, cmap = plt.get_cmap('rainbow'))
ax.contour(X1, X2, Z, zdir='z', offset=0)#绘制等高线
ax.set_xlabel('X1')#x轴说明
ax.set_ylabel('X2')#y轴说明
ax.set_zlabel('Z')#z轴说明
ax.set_title('F9_space')
plt.show()
F9Plot()
然后我们使用优化算法来寻优,自定义好所有的参数:
#设置参数
pop = 30 #种群数量
MaxIter = 200#最大迭代次数
dim = 30 #维度
lb = -100*np.ones([dim, 1]) #下边界
ub = 100*np.ones([dim, 1])#上边界
#选择适应度函数
fobj = F9
#原始算法
GbestScore,GbestPositon,Curve = GSA(pop,dim,lb,ub,MaxIter,fobj)
#改进算法
print('------原始算法结果--------------')
print('最优适应度值:',GbestScore)
print('最优解:',GbestPositon)
其实f9测试函数的最小值是0。所以可以看到这个算法能寻到最优,不是接近,是就是最优,效果很好。
自己使用解决实际问题的时候只需要替换fobj这个目标函数的参数就可以了。
这个函数就如同上面所有的自定义的测试函数一样,你只需要定义输入的x,经过1系列实际问题的计算逻辑,返回的适应度值就可以。
绘制适应度曲线
#绘制适应度曲线
plt.figure(figsize=(6,2.7),dpi=128)
plt.semilogy(Curve,'b-',linewidth=2)
plt.xlabel('Iteration',fontsize='medium')
plt.ylabel("Fitness",fontsize='medium')
plt.grid()
plt.title('GS',fontsize='large')
plt.legend(['GSA'], loc='upper right')
plt.show()
我这里是对数轴,但是也收敛了,在25左右基本就到0了,GSA还是很厉害的。
其实看到这里差不多就可以去把这个优化算法的函数拿去使用了,演示结束了,但是由于我们这里还需要对它的性能做一些测试,我们会把它在所有的测试函数上都跑一遍,这个时间可能是有点久的。
所有函数都测试一下
准备存储评价结果的数据框
functions = list(Funobject.keys())
algorithms = list(OPT_algorithms.keys())
columns = ['Mean', 'Std', 'Best', 'Worth']
index = pd.MultiIndex.from_product([functions, algorithms], names=['function_name', 'Algorithm_name'])
df_eval = pd.DataFrame(index=index, columns=columns)
df_eval.head()
索引和列名称都建好了,现在就是一个个跑,把值放进去就行了。
准备存储迭代图的数据框
df_Curve=pd.DataFrame(columns=index)
df_Curve
自定义训练函数
#定义训练函数
def train_fun(fobj_name=None,opt_algo_name=None, pop=30,MaxIter=200,Iter=30,show_fit=False):
fundim=Fundim[fobj_name] ; fobj=Funobject[fobj_name]
dim=fundim[0]
lb = fundim[1]*np.ones([dim, 1]) ; ub = fundim[2]*np.ones([dim, 1])
opt_algo=OPT_algorithms[opt_algo_name]
GbestScore_one=np.zeros([Iter])
GbestPositon_one=np.zeros([Iter,dim])
Curve_one=np.zeros([Iter,MaxIter])
for i in range(Iter):
GbestScore_one[i],GbestPositon_one[i,:],Curve_oneT =opt_algo(pop,dim,lb,ub,MaxIter,fobj)
Curve_one[i,:]=Curve_oneT.T
oneal_Mean=np.mean(GbestScore_one) #计算平均适应度值
oneal_Std=np.std(GbestScore_one)#计算标准差
oneal_Best=np.min(GbestScore_one)#计算最优值
oneal_Worst=np.max(GbestScore_one)#计算最差值
oneal_MeanCurve=Curve_one.mean(axis=0) #求平均适应度曲线
#储存结果
df_eval.loc[(fobj_name, opt_algo_name), :] = [oneal_Mean,oneal_Std, oneal_Best,oneal_Worst]
df_Curve.loc[:,(fobj_name,opt_algo_name)]=oneal_MeanCurve
#df_Curve[df_Curve.columns[(fobj_name,opt_algo_name)]] = oneal_MeanCurve
if show_fit:
print(f'{fobj_name}函数的{opt_algo_name}算法的平均适应度值是{oneal_Mean},标准差{oneal_Std},最优值{oneal_Best},最差值{oneal_Worst}')
训练测试
#设置参数
pop = 30#种群数量
MaxIter = 100 #代次数
Iter = 30 #运行次数
计算,遍历所有的测试函数
#所有函数,所有算法全部一次性计算
for fobj_name in list(Funobject.keys()):
for opt_algo_name in OPT_algorithms.keys():
try:
train_fun(fobj_name=fobj_name,opt_algo_name=opt_algo_name, pop=pop,MaxIter=MaxIter,Iter=Iter)
print(f'{fobj_name}的{opt_algo_name}算法完成')
except Exception as e: # 使用 except 来捕获错误
print(f'{fobj_name}的{opt_algo_name}算法报错了:{e}') # 打印错误信息
查看计算出来的评价指标
df_eval
由于这里大部分的测试函数最优值都是零,我们可以看到。GSa在很多函数上基本是可以找到接近最优值的,效果虽然不如SSA,SMA这些,但是还是不错的。 算是T0.5等级的优化算法。
画出迭代图
colors = ['darkorange', 'limegreen', 'lightpink', 'deeppink', 'red', 'cornflowerblue', 'grey']
markers = ['^', 'D', 'o', '*', 'X', 'p', 's']
def plot_log_line(df_plot, fobj_name, step=10, save=False):
plt.figure(figsize=(6, 3), dpi=128)
for column, color, marker in zip(df_plot.columns, colors, markers):
plt.semilogy(df_plot.index[::step], df_plot[column][::step].to_numpy(),
color=color, marker=marker, label=column, markersize=4, alpha=0.7)
plt.xlabel('Iterations')
plt.ylabel('f')
plt.legend(loc='best', fontsize=8)
if save:
plt.savefig(f'./图片/{fobj_name}不同迭代图.png', bbox_inches='tight')
plt.show()
# 使用示例
# plot_log_line(your_dataframe, 'example_plot')
for fobj_name in df_Curve.columns.get_level_values(0).unique():
df1=df_Curve[fobj_name]
print(f'{fobj_name}的不同算法效果对比:')
plot_log_line(df1,fobj_name,5,False) #保存图片-True
注意这里是y轴是对数轴,看起来没那么陡峭。这里可以打印它在每一个测试函数上的迭代图,可以自己具体仔细观察。。。当然观察后这个算法效果是还行的,100轮基本都收敛到最优值了,虽然有时候没有很接近最优。只能说还行。
后面还有更多的优化算法,等我有空都写完。其实文章最核心的还是优化算法的函数那一块儿,别的代码都是用来测试它的性能的
当然需要本次案例的全部代码文件的还是可以参考:黄金正弦优化算法
创作不易,看官觉得写得还不错的话点个关注和赞吧,本人会持续更新python数据分析领域的代码文章~(需要定制类似的代码可私信)