书生大模型实战营基础(5)——XTuner 微调个人小助手认知任务

news2024/11/15 4:38:39

目录

1 、微调前置基础

2、准备工作

2.1环境配置

结果

2.2模型准备

目录结构:在目录结构中可以看出,internlm2-chat-1_8b 是一个符号链接

3、快速开始

3.1 微调前的模型对话

获取开发机端口和密码:

3.2 指令跟随微调

3.2.1 准备数据文件

目录结构

3.2.2 准备配置文件

3.2.2.1 列出支持的配置文件

3.2.2.2 复制一个预设的配置文件

目录结构图片

3.2.2.3 对配置文件进行修改

配置文件图片 

3.2.3 启动微调

在训练完后,我们的目录结构 图片:

3.2.4 模型格式转换

 模型格式转换完成,目录结构图:

3.2.5 模型合并

模型合并完成后,我们的目录结构:

3.3 微调后的模型对话

图片


1 、微调前置基础

本节主要重点是带领大家实现个人小助手微调,如果想了解微调相关的基本概念,可以访问XTuner微调前置基础。

2、准备工作

2.1环境配置

按照前面步骤创建开发机,名称:XTuner微调,选择开发机镜像:Cuda12.2-conda,可选择10%有更高可选择更高。

克隆仓库:
 

mkdir -p /root/InternLM/Tutorial
git clone -b camp3  https://github.com/InternLM/Tutorial /root/InternLM/Tutorial
# 创建虚拟环境
conda create -n xtuner0121 python=3.10 -y

# 激活虚拟环境(注意:后续的所有操作都需要在这个虚拟环境中进行)
conda activate xtuner0121

# 安装一些必要的库
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
# 安装其他依赖
pip install transformers==4.39.3
pip install streamlit==1.36.0

安装XTuner

虚拟环境创建完成后,就可以安装 XTuner 了。首先,从 Github 上下载源码。

# 创建一个目录,用来存放源代码
mkdir -p /root/InternLM/code

cd /root/InternLM/code

git clone -b v0.1.21  https://github.com/InternLM/XTuner /root/InternLM/code/XTuner

其次,进入源码目录,执行安装。

# 进入到源码目录
cd /root/InternLM/code/XTuner
conda activate xtuner0121

# 执行安装
pip install -e '.[deepspeed]'

如果速度太慢可以换成 pip install -e '.[deepspeed]' -i https://mirrors.aliyun.com/pypi/simple/

最后,我们可以验证一下安装结果。

xtuner version

通过以下命令来查看相关的帮助:xtuner help

接下来准备好我们需要的模型、数据集和配置文件,并进行微调训练。

结果

2.2模型准备

可以通过以下代码一键通过符号链接的方式链接到模型文件,这样既节省了空间,也便于管理。

# 创建一个目录,用来存放微调的所有资料,后续的所有操作都在该路径中进行
mkdir -p /root/InternLM/XTuner

cd /root/InternLM/XTuner

mkdir -p Shanghai_AI_Laboratory

ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b Shanghai_AI_Laboratory/internlm2-chat-1_8b

执行上述操作后,Shanghai_AI_Laboratory/internlm2-chat-1_8b 将直接成为一个符号链接,这个链接指向 /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b 的位置。

这意味着,当我们访问 Shanghai_AI_Laboratory/internlm2-chat-1_8b 时,实际上就是在访问 /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b 目录下的内容。通过这种方式,我们无需复制任何数据,就可以直接利用现有的模型文件进行后续的微调操作,从而节省存储空间并简化文件管理。

模型文件准备好后,我们可以使用tree命令来观察目录结构

apt-get install -y tree

tree -l

目录结构:在目录结构中可以看出,internlm2-chat-1_8b 是一个符号链接

3、快速开始

简述:用 internlm2-chat-1_8b 模型,通过 QLoRA 的方式来微调一个自己的小助手认知作为案例来进行演示。

3.1 微调前的模型对话

通过网页端的 Demo 来看看微调前 internlm2-chat-1_8b 的对话效果。

首先,我们需要准备一个Streamlit程序的脚本。

Streamlit程序的完整代码是:tools/xtuner_streamlit_demo.py。

启动应用:

conda activate xtuner0121

streamlit run /root/InternLM/Tutorial/tools/xtuner_streamlit_demo.py

运行后需要端口映射

获取开发机端口和密码:

其中,8501是Streamlit程序的服务端口,43551需要替换为自己的开发机的端口。

ssh -CNg -L 8501:127.0.0.1:8501 root@ssh.intern-ai.org.cn -p 43551

在本地通过浏览器访问:http://127.0.0.1:8501 来进行对话

3.2 指令跟随微调

接下来,对模型进行微调,让模型了解自己是一个助手

3.2.1 准备数据文件

为了将模型变成我们想要的样子,回复符合我们的预期,需要向微调数据集中加入这样的数据。

准备数据文件datas/assisttant.json,文件内容为对话数据。

cd /root/InternLM/XTuner
mkdir -p datas
touch datas/assistant.json

为了简化数据文件准备,我们也可以通过脚本生成的方式来准备数据。创建一个脚本文件 xtuner_generate_assistant.py :

cd /root/InternLM/XTuner
touch xtuner_generate_assistant.py

输入脚本内容并保存:

xtuner_generate_assistant.py:

import json

# 设置用户的名字
name = '伍鲜同志'
# 设置需要重复添加的数据次数
n = 8000

# 初始化数据
data = [
    {"conversation": [{"input": "请介绍一下你自己", "output": "我是{}的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦".format(name)}]},
    {"conversation": [{"input": "你在实战营做什么", "output": "我在这里帮助{}完成XTuner微调个人小助手的任务".format(name)}]}
]

# 通过循环,将初始化的对话数据重复添加到data列表中
for i in range(n):
    data.append(data[0])
    data.append(data[1])

# 将data列表中的数据写入到'datas/assistant.json'文件中
with open('datas/assistant.json', 'w', encoding='utf-8') as f:
    # 使用json.dump方法将数据以JSON格式写入文件
    # ensure_ascii=False 确保中文字符正常显示
    # indent=4 使得文件内容格式化,便于阅读
    json.dump(data, f, ensure_ascii=False, indent=4)
cd /root/InternLM/XTuner
cp /root/InternLM/Tutorial/tools/xtuner_generate_assistant.py ./

为了训练出自己的小助手,需要将脚本中name后面的内容修改为你自己的名称。

# 将对应的name进行修改(在第4行的位置)
- name = '伍鲜同志'
+ name = "你自己的名称"

假如想要让微调后的模型能够完完全全认识到你的身份,我们还可以把第6行的n的值调大一点。不过n值太大的话容易导致过拟合,无法有效回答其他问题。

然后执行该脚本来生成数据文件

cd /root/InternLM/XTuner
conda activate xtuner0121

python xtuner_generate_assistant.py

准备好数据文件后,我们的目录结构应该是这样子的。

目录结构

3.2.2 准备配置

文件

在准备好了模型和数据集后,我们就要根据我们选择的微调方法结合微调方案来找到与我们最匹配的配置文件了,从而减少我们对配置文件的修改量。

配置文件其实是一种用于定义和控制模型训练和测试过程中各个方面的参数和设置的工具。

3.2.2.1 列出支持的配置文件

XTuner 提供多个开箱即用的配置文件,可以通过以下命令查看。

xtuner list-cfg 命令用于列出内置的所有配置文件。参数 -p 或 --pattern 表示模式匹配,后面跟着的内容将会在所有的配置文件里进行模糊匹配搜索,然后返回最有可能得内容。比如我们这里微调的是书生·浦语的模型,我们就可以匹配搜索 internlm2

conda activate xtuner0121

xtuner list-cfg -p internlm2
3.2.2.2 复制一个预设的配置文件

由于我们是对internlm2-chat-1_8b模型进行指令微调,所以与我们的需求最匹配的配置文件是 internlm2_chat_1_8b_qlora_alpaca_e3,这里就复制该配置文件。

xtuner copy-cfg 命令用于复制一个内置的配置文件。该命令需要两个参数:CONFIG 代表需要复制的配置文件名称,SAVE_PATH 代表复制的目标路径。在我们的输入的这个命令中,我们的 CONFIG 对应的是上面搜索到的 internlm2_chat_1_8b_qlora_alpaca_e3 ,而 SAVE_PATH 则是当前目录 .

cd /root/InternLM/XTuner
conda activate xtuner0121

xtuner copy-cfg internlm2_chat_1_8b_qlora_alpaca_e3 .
3.2.2.3 对配置文件进行修改

在选择了一个最匹配的配置文件并准备好其他内容后,下面我们要做的事情就是根据我们自己的内容对该配置文件进行调整,使其能够满足我们实际训练的要求。

下面我们将根据项目的需求一步步的进行修改和调整

在 PART 1 的部分,由于我们不再需要在 HuggingFace 上自动下载模型,因此我们先要更换模型的路径以及数据集的路径为我们本地的路径。

为了训练过程中能够实时观察到模型的变化情况,XTuner 贴心的推出了一个 evaluation_inputs 的参数来让我们能够设置多个问题来确保模型在训练过程中的变化是朝着我们想要的方向前进的。我们可以添加自己的输入。

在 PART 3 的部分,由于我们准备的数据集是 JSON 格式的数据,并且对话内容已经是 input 和 output 的数据对,所以不需要进行格式转换。

#######################################################################
#                          PART 1  Settings                           #
#######################################################################
- pretrained_model_name_or_path = 'internlm/internlm2-chat-1_8b'
+ pretrained_model_name_or_path = '/root/InternLM/XTuner/Shanghai_AI_Laboratory/internlm2-chat-1_8b'

- alpaca_en_path = 'tatsu-lab/alpaca'
+ alpaca_en_path = 'datas/assistant.json'

evaluation_inputs = [
-    '请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
+    '请介绍一下你自己', 'Please introduce yourself'
]

#######################################################################
#                      PART 3  Dataset & Dataloader                   #
#######################################################################
alpaca_en = dict(
    type=process_hf_dataset,
-   dataset=dict(type=load_dataset, path=alpaca_en_path),
+   dataset=dict(type=load_dataset, path='json', data_files=dict(train=alpaca_en_path)),
    tokenizer=tokenizer,
    max_length=max_length,
-   dataset_map_fn=alpaca_map_fn,
+   dataset_map_fn=None,
    template_map_fn=dict(
        type=template_map_fn_factory, template=prompt_template),
    remove_unused_columns=True,
    shuffle_before_pack=True,
    pack_to_max_length=pack_to_max_length,
    use_varlen_attn=use_varlen_attn)

除此之外,我们还可以对一些重要的参数进行调整,包括学习率(lr)、训练的轮数(max_epochs)等等。

修改完后的完整的配置文件是:configs/internlm2_chat_1_8b_qlora_alpaca_e3_copy.py。

可以直接复制到当前目录。

cd /root/InternLM/XTuner
cp /root/InternLM/Tutorial/configs/internlm2_chat_1_8b_qlora_alpaca_e3_copy.py ./

3.2.3 启动微调

完成了所有的准备工作后,我们就可以正式的开始我们下一阶段的旅程:XTuner 启动~!

接下来,只需要将使用 xtuner train 命令令即可开始训练。

xtuner train 命令用于启动模型微调进程。该命令需要一个参数:CONFIG 用于指定微调配置文件。这里我们使用修改好的配置文件 internlm2_chat_1_8b_qlora_alpaca_e3_copy.py
训练过程中产生的所有文件,包括日志、配置文件、检查点文件、微调后的模型等,默认保存在 work_dirs 目录下,我们也可以通过添加 --work-dir 指定特定的文件保存位置。

cd /root/InternLM/XTuner
conda activate xtuner0121

xtuner train ./internlm2_chat_1_8b_qlora_alpaca_e3_copy.py

训练结束:

3.2.4 模型格式转换

模型转换的本质其实就是将原本使用 Pytorch 训练出来的模型权重文件转换为目前通用的 HuggingFace 格式文件,那么我们可以通过以下命令来实现一键转换。使用 xtuner convert pth_to_hf 命令来进行模型格式转换。

cd /root/InternLM/XTuner
conda activate xtuner0121

# 先获取最后保存的一个pth文件
pth_file=`ls -t ./work_dirs/internlm2_chat_1_8b_qlora_alpaca_e3_copy/*.pth | head -n 1`
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert pth_to_hf ./internlm2_chat_1_8b_qlora_alpaca_e3_copy.py ${pth_file} ./hf

 模型格式转换完成,目录结构图:

转换完成后,可以看到模型被转换为 HuggingFace 中常用的 .bin 格式文件,这就代表着文件成功被转化为 HuggingFace 格式了。

此时,hf 文件夹即为我们平时所理解的所谓 “LoRA 模型文件”

可以简单理解:LoRA 模型文件 = Adapter

3.2.5 模型合并

对于 LoRA 或者 QLoRA 微调出来的模型其实并不是一个完整的模型,而是一个额外的层(Adapter),训练完的这个层最终还是要与原模型进行合并才能被正常的使用。

对于全量微调的模型(full)其实是不需要进行整合这一步的,因为全量微调修改的是原模型的权重而非微调一个新的 Adapter ,因此是不需要进行模型整合的。

在 XTuner 中提供了一键合并的命令 xtuner convert merge,在使用前我们需要准备好三个路径,包括原模型的路径、训练好的 Adapter 层的(模型格式转换后的)路径以及最终保存的路径。

xtuner convert merge命令用于合并模型。该命令需要三个参数:LLM 表示原模型路径,ADAPTER 表示 Adapter 层的路径, SAVE_PATH 表示合并后的模型最终的保存路径。

在模型合并这一步还有其他很多的可选参数,包括:

cd /root/InternLM/XTuner
conda activate xtuner0121

export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert merge /root/InternLM/XTuner/Shanghai_AI_Laboratory/internlm2-chat-1_8b ./hf ./merged --max-shard-size 2GB

模型合并完成后,我们的目录结构:

3.3 微调后的模型对话

微调完成后,我们可以再次运行xtuner_streamlit_demo.py脚本来观察微调后的对话效果,不过在运行之前,我们需要将脚本中的模型路径修改为微调后的模型的路径。

# 直接修改脚本文件第18行
- model_name_or_path = "/root/InternLM/XTuner/Shanghai_AI_Laboratory/internlm2-chat-1_8b"
+ model_name_or_path = "/root/InternLM/XTuner/merged"

然后,我们可以直接启动应用。

conda activate xtuner0121

streamlit run /root/InternLM/Tutorial/tools/xtuner_streamlit_demo.py

运行后,确保端口映射正常,如果映射已断开则需要重新做一次端口映射。

ssh -CNg -L 8501:127.0.0.1:8501 root@ssh.intern-ai.org.cn -p 43551

最后,通过浏览器访问:http://127.0.0.1:8501 来进行对话了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2090342.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于Yolov5_6.1、LPRNet、PySide6开发的车牌识别系统

项目概述 项目背景 随着车辆数量的不断增加,车牌识别系统在交通管理、停车场自动化等领域变得越来越重要。本项目利用先进的深度学习技术和现代图形用户界面框架来实现高效的车牌识别功能。 项目特点 高效识别:采用 YOLOv5_6.1 进行车牌定位&#xff…

Linux--IO模型_多路转接

目录 0.往期文章 1.五种IO模型介绍 概念 调用函数(非阻塞IO) 2.详解多路转接 之select select函数介绍 设置文件描述符 写一个基于select的TCP服务器 辅助库 基于TCP的Socket封装 服务器代码 测试服务器 小结 3.详解多路转接 之poll poll函…

【云游戏】点量云流赋能大型游戏新体验

点量小刘发现近期国产化大型3A游戏《黑神话:悟空》的发售,可谓是赢得了一波好评。从场景内容来说深厚的文化底蕴支撑和高质量精美的特效及画面制作令人眼前一亮,作为备受瞩目的一款游戏,从技术层面来说,该游戏也离不开…

关于武汉芯景科技有限公司的多协议收发芯片XJ3160开发指南(兼容MAX3160)

一、芯片引脚介绍 1.芯片引脚图 2.引脚描述 二、功能模式 1.RS232模式 2.RS485模式

赋能楼宇智能化升级:EasyCVR视频汇聚平台引领智慧楼宇安防新趋势

在当今科技飞速发展的时代,智慧楼宇监控系统如同一位默默守护的“超级卫士”,保障着我们工作和生活的舒适与安全。那么,这个强大的“卫士”是由哪些子系统构成的呢?且听我慢慢道来。 一、智慧楼宇的组成部分 首先,不…

神州数码半年业绩双增长,AI驱动数云服务及软件业务增长62.7%

发布 | 大力财经 8月30日晚间,神州数码集团(000034.SZ)发布2024年度中期业绩报告。 报告期内,神州数码营业收入实现625.6亿元,同比增长12.5%;归母净利润实现5.1亿元,同比增长17.5%&#xff1b…

JavaScript 知识:this、apply/call/bind、Promise、HTTP 库 Axios

1、变量、声明、传递 (值、引用) javascript:void(0) 含义 javascript:void(0) 中最关键的是 void 关键字, void 是 JavaScript 中非常重要的关键字,该操作符指定要计算一个表达式但是不返回值。void() 仅仅是代表不返回任何值,但是括号内的表…

字体的一些基本知识(字体族、衬线字体、回退机制)

文章目录 字体族常见的字体族作为网页,这里暂时只讨论衬线体和无衬线体多字体机制(fallback)回退机制 字体族 衬线体(serif)无衬线体(sans-serif)等宽字体(monospace)手…

Vue3中 defineProps 与 defineEmits 基本使用

defineProps 基本概念 在Vue 3中,defineProps是一个函数,用于定义一个组件的props。它接收一个props对象作为参数,并且会返回一个响应式的props对象。简单来说在vue3中,在进行父组件向子组件的通信,我们可以使用defin…

DeeplxFile:基于Deeplx提供的免费,不限制文件大小的文件翻译工具

DeeplxFile是一款基于Deeplx提供的免费,不限制文件大小的文件翻译工具,目前已完全支持Word,Excel,powerpoint 支持翻译大部分内容,工具支持Windows和macos Windows提供了编译好的exe版本, 直接双击运行即可&#xff0…

并发容器简介

由于同步器的串行化严重降低了并发性,Java之后推出了多种并发容器,使用并发容器来替代同步容器,可以提高绳索性并降低风险 J.U.C包中提供了几个非常有用的并发容器作为线程安全的容器: J.U.C包中提供的并发容器命名一般分为三类&…

EmguCV学习笔记 VB.Net 8.1 漫水填充法 floodFill

版权声明:本文为博主原创文章,转载请在显著位置标明本文出处以及作者网名,未经作者允许不得用于商业目的。 EmguCV是一个基于OpenCV的开源免费的跨平台计算机视觉库,它向C#和VB.NET开发者提供了OpenCV库的大部分功能。 教程VB.net版本请访问…

RabbitMQ本地Ubuntu系统环境部署与无公网IP远程连接服务端实战演示

文章目录 前言1.安装erlang 语言2.安装rabbitMQ3. 安装内网穿透工具3.1 安装cpolar内网穿透3.2 创建HTTP隧道 4. 公网远程连接5.固定公网TCP地址5.1 保留一个固定的公网TCP端口地址5.2 配置固定公网TCP端口地址 💡 推荐 前些天发现了一个巨牛的人工智能学习网站&am…

Docker 数据卷管理及优化

目录 1 数据卷实现的目的 2 为什么要用数据卷 3 docker的两种数据卷 3.1 bind mount 数据卷 实践实例: 3.2 docker managed 数据卷 实验实例: 3.3 bind mount 数据卷和docker managed 数据卷的对比 3.3.1 相同点: 3.3.2 不同点: …

Ubuntu安装android studio(压缩包版)

#这里适用于linux版压缩版# 1、官网下载Linux版本压缩包 2、下载的文件 .gz,将这个包双击解压出来 3、直接进入解压包的bin目录下,右击在终端打开 3.1、输入 ./studio.sh ./studio.sh 如图所示: 后续操作见图片 下载的时候,直接cancel&…

HIVE 数据仓库工具之第二部分(数据库相关操作)

HIVE 数据仓库工具之第二部分(数据库相关操作) 一、Hive 对数据库的操作1.1 创建数据库1.1.1 创建数据库语法1.1.3 示例 1.2 使用数据库1.2.1 使用数据库语法1.2.2 示例 1.3 修改数据库1.3.1 修改数据库的语法1.3.2 示例 1.4 删除数据库1.4.1 删除数据库…

STM32基于HAL库串口printf使用和接收

我们这里使用HAL库直接用cubemx生成代码配置串口 1.打开cubemx,选择MCU型号 2.我这里使用的是STM32F103C8T6,根据自己的型号选择,这里不限制型号 3.选择时钟源 4.系统设置 5时钟配置 5.选择和配置串口 5.配置中断和中断优先级 6.工程设置…

ElasticSearch 集群的索引别名管理

一、索引别名 (一)添加索引别名 1.给单个索引添加别名 POST http://10.0.0.101:9200/_aliases{"actions":[{"add":{"index":"yedu-linux85","alias":"Linux容器运维"} },{"add&q…

Xinstall赋能,H5与App完美融合,打造极致用户体验

随着移动互联网的迅猛发展,App已经成为我们日常生活中不可或缺的一部分。然而,在App推广和运营的过程中,推广者们常常面临着一个难题:如何将H5网页上的用户顺利引导至App内,实现用户增长和活跃度提升?今天&…

ShenNiusModularity项目源码学习(3:用户登录)

第一篇文章中搞错了一件事,ShenNiusModularity项目启动并非需要同时启动ShenNius.Admin.Mvc和ShenNius.Admin.Hosting两个项目,仅需启动前者即可登录后台管理系统,而后者是支持前后端分离的API宿主项目,供其它前后端分离的项目调用…