代码随想录算法训练营第30天 贪心算法 part04 | 题目:452. 用最少数量的箭引爆气球、 435. 无重叠区间 、763.划分字母区间

news2024/11/17 6:00:20

代码随想录算法训练营第30天 贪心算法 part04 | 题目:452. 用最少数量的箭引爆气球、 435. 无重叠区间 、763.划分字母区间

文章来源:代码随想录

题目名称:452. 用最少数量的箭引爆气球

在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以纵坐标并不重要,因此只要知道开始和结束的横坐标就足够了。开始坐标总是小于结束坐标。

一支弓箭可以沿着 x 轴从不同点完全垂直地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。

给你一个数组 points ,其中 points [i] = [xstart,xend] ,返回引爆所有气球所必须射出的最小弓箭数。

示例 1:

输入:points = [[10,16],[2,8],[1,6],[7,12]]
输出:2
解释:对于该样例,x = 6 可以射爆 [2,8],[1,6] 两个气球,以及 x = 11 射爆另外两个气球
示例 2:

输入:points = [[1,2],[3,4],[5,6],[7,8]]
输出:4
示例 3:

输入:points = [[1,2],[2,3],[3,4],[4,5]]
输出:2
示例 4:

输入:points = [[1,2]]
输出:1
示例 5:

输入:points = [[2,3],[2,3]]
输出:1
提示:

0 <= points.length <= 10^4
points[i].length == 2
-2^31 <= xstart < xend <= 2^31 - 1

第一想法:

按照最小值先进行排序,排序后遍历是否有重叠的气球,如果出现,则重叠的气球右端必须有一只箭。

解答思路:

如何使用最少的弓箭呢?

直觉上来看,貌似只射重叠最多的气球,用的弓箭一定最少,那么有没有当前重叠了三个气球,我射两个,留下一个和后面的一起射这样弓箭用的更少的情况呢?

尝试一下举反例,发现没有这种情况。

那么就试一试贪心吧!局部最优:当气球出现重叠,一起射,所用弓箭最少。全局最优:把所有气球射爆所用弓箭最少。

算法确定下来了,那么如何模拟气球射爆的过程呢?是在数组中移除元素还是做标记呢?

如果真实的模拟射气球的过程,应该射一个,气球数组就remove一个元素,这样最直观,毕竟气球被射了。

但仔细思考一下就发现:如果把气球排序之后,从前到后遍历气球,被射过的气球仅仅跳过就行了,没有必要让气球数组remove气球,只要记录一下箭的数量就可以了。

以上为思考过程,已经确定下来使用贪心了,那么开始解题。

为了让气球尽可能的重叠,需要对数组进行排序。

那么按照气球起始位置排序,还是按照气球终止位置排序呢?

其实都可以!只不过对应的遍历顺序不同,我就按照气球的起始位置排序了。

既然按照起始位置排序,那么就从前向后遍历气球数组,靠左尽可能让气球重复。

从前向后遍历遇到重叠的气球了怎么办?

如果气球重叠了,重叠气球中右边边界的最小值 之前的区间一定需要一个弓箭。

以题目示例: [[10,16],[2,8],[1,6],[7,12]]为例,如图:(方便起见,已经排序)
在这里插入图片描述

收获:

如何模拟这个过程,需要寻找重叠气球的右边界是代码技巧。

题目名称:435. 无重叠区间

给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。

注意: 可以认为区间的终点总是大于它的起点。 区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠。

示例 1:

输入: [ [1,2], [2,3], [3,4], [1,3] ]
输出: 1
解释: 移除 [1,3] 后,剩下的区间没有重叠。
示例 2:

输入: [ [1,2], [1,2], [1,2] ]
输出: 2
解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。
示例 3:

输入: [ [1,2], [2,3] ]
输出: 0
解释: 你不需要移除任何区间,因为它们已经是无重叠的了。

第一想法:

排序后遍历,当出现重叠数组时,移除最右端最大的那个数组,计数加一。

解答思路:

相信很多同学看到这道题目都冥冥之中感觉要排序,但是究竟是按照右边界排序,还是按照左边界排序呢?

其实都可以。主要就是为了让区间尽可能的重叠。

我来按照右边界排序,从左向右记录非交叉区间的个数。最后用区间总数减去非交叉区间的个数就是需要移除的区间个数了。

此时问题就是要求非交叉区间的最大个数。

这里记录非交叉区间的个数还是有技巧的,如图:
在这里插入图片描述
区间,1,2,3,4,5,6都按照右边界排好序。

当确定区间 1 和 区间2 重叠后,如何确定是否与 区间3 也重贴呢?

就是取 区间1 和 区间2 右边界的最小值,因为这个最小值之前的部分一定是 区间1 和区间2 的重合部分,如果这个最小值也触达到区间3,那么说明 区间 1,2,3都是重合的。

接下来就是找大于区间1结束位置的区间,是从区间4开始。那有同学问了为什么不从区间5开始?别忘了已经是按照右边界排序的了。

区间4结束之后,再找到区间6,所以一共记录非交叉区间的个数是三个。

总共区间个数为6,减去非交叉区间的个数3。移除区间的最小数量就是3。
最简单的,其实就是看有几个重叠区域,总数减去重叠区域即可,在上一题中,相邻不算重叠,而本题是需要计算的,只需要更改一下上题代码即可:

class Solution {
    public int findMinArrowShots(int[][] points) {
          Arrays.sort(points, (a, b) -> Integer.compare(a[0], b[0]));
           int count = 1;  // points 不为空至少需要一支箭
            for (int i = 1; i < points.length; i++) {
                if(points[i][0]>points[i-1][1]){
                    count++;
                }else{
                    points[i][1] = Math.min(points[i][1], points[i - 1][1]); // 更新重叠气球最小右边界
                }
            }
  return count;
    }
}

题目名称:763.划分字母区间

字符串 S 由小写字母组成。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。返回一个表示每个字符串片段的长度的列表。
示例:
输入:S = “ababcbacadefegdehijhklij”
输出:[9,7,8] 解释: 划分结果为 “ababcbaca”, “defegde”, “hijhklij”。 每个字母最多出现在一个片段中。 像 “ababcbacadefegde”, “hijhklij” 的划分是错误的,因为划分的片段数较少。
提示:
S的长度在[1, 500]之间。
S只包含小写字母 ‘a’ 到 ‘z’ 。

第一想法:

找到不同的字母最后出现的位置

解答思路:

一想到分割字符串就想到了回溯,但本题其实不用回溯去暴力搜索。

题目要求同一字母最多出现在一个片段中,那么如何把同一个字母的都圈在同一个区间里呢?

如果没有接触过这种题目的话,还挺有难度的。

在遍历的过程中相当于是要找每一个字母的边界,如果找到之前遍历过的所有字母的最远边界,说明这个边界就是分割点了。此时前面出现过所有字母,最远也就到这个边界了。

可以分为如下两步:

统计每一个字符最后出现的位置
从头遍历字符,并更新字符的最远出现下标,如果找到字符最远出现位置下标和当前下标相等了,则找到了分割点
在这里插入图片描述

class Solution {
    public List<Integer> partitionLabels(String S) {
        List<Integer> list = new LinkedList<>();
        int[] edge = new int[26];
        char[] chars = S.toCharArray();
        for (int i = 0; i < chars.length; i++) {
            edge[chars[i] - 'a'] = i;
        }
        int idx = 0;
        int last = -1;
        for (int i = 0; i < chars.length; i++) {
            idx = Math.max(idx,edge[chars[i] - 'a']);找出不断更新每一位的最远下标
            if (i == idx) {
                list.add(i - last);
                last = i;
            }
        }
        return list;
    }
}

困难:

没有思路

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2088057.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Tarjan的脱机最小公共祖先算法详解

Tarjan的脱机最小公共祖先算法详解 一、算法概述二、算法伪代码三、C语言实现四、证明与分析在解决脱机最小公共祖先(Least Common Ancestors, LCA)问题时,Tarjan算法提供了一种高效的途径。该算法通过一次深度优先搜索(DFS)遍历整棵树,并利用并查集(Union-Find)数据结…

【TiDB原理与实战详解】5、BR 物理备份恢复与Binlog 数据同步~学不会? 不存在的!

BR 物理备份恢复 BR 全称为 Backup & Restore&#xff0c;是 TiDB 分布式备份恢复的命令行工具&#xff0c;用于对 TiDB 集群进行数据备份和恢复。 相比 dumpling&#xff0c;BR 更适合大数据量的场景。 BR 除了可以用来进行常规备份恢复外&#xff0c;也可以在保证兼容…

centos 7部署nacos 2.4.1版本单点方式

文章目录 Nacos&#xff1a;微服务架构中的服务发现与配置管理利器官方网址引言Nacos简介Nacos的核心功能1. 服务发现和服务健康监测2. 动态配置服务3. 服务及其元数据管理 Nacos的工作原理Nacos的集群部署与高可用性Nacos的使用场景如何使用Nacos1. 安装Nacos2. 服务注册与发现…

Linux---FTP文件服务器搭建及实战

一、FTP简介 FTP: File Transfer Protocol文件传输协议 FTP是用于在网络上进行文件传输的一套标准协议&#xff0c;使用客户/服务器模式。它属于网络传输协议的应用层。文件传送(file transfer&#xff09;和文件访问(file access&#xff09;之间的区别在于&#xff1a;前者…

紫金大数据平台架构之路(一)----大数据任务开发和调度平台架构设计

一、总体设计 初来公司时&#xff0c;公司还没有大数据&#xff0c;我是作为大数据架构师招入的&#xff0c;结合公司的线上和线下业务&#xff0c;制定了如下的大数据架构路线图。 二、大数据任务开发和调度平台架构设计 在设计完总体架构后&#xff0c;并且搭建完hadoop/ya…

ArkUI-布局(四)

ArkUI-布局 轮播部分属性及方法循环播放及自动轮播导航点样式页面切换方式轮播方向每页显示多个子页面自定义切换动画 选项卡使用方式部分属性及方法顶部导航和底部导航侧边导航限制导航栏的滑动固定导航栏和滚动导航栏自定义导航栏切换至指定页签 轮播 Swiper组件提供滑动轮播…

大语言模型从零开始训练全面指南:预训练、Tokenizer训练、指令微调、奖励模型、强化学习

在这篇文章中&#xff0c;我们将尽可能详细地梳理一个完整的 LLM 训练流程。包括模型预训练&#xff08;Pretrain&#xff09;、Tokenizer 训练、指令微调&#xff08;Instruction Tuning&#xff09;、奖励模型&#xff08;Reward Model&#xff09;和强化学习&#xff08;RLH…

SprinBoot+Vue线上教学平台的设计与实现

目录 1 项目介绍2 项目截图3 核心代码3.1 Controller3.2 Service3.3 Dao3.4 application.yml3.5 SpringbootApplication3.5 Vue 4 数据库表设计5 文档参考6 计算机毕设选题推荐7 源码获取 1 项目介绍 博主个人介绍&#xff1a;CSDN认证博客专家&#xff0c;CSDN平台Java领域优质…

基于yolov8的雾天行人车辆检测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】 基于YOLOv8的雾天行人车辆检测系统是一种高效且先进的解决方案&#xff0c;专门用于在恶劣的雾天条件下检测和识别道路上的行人和车辆。YOLOv8作为最新的YOLO系列模型&#xff0c;自2023年推出以来&#xff0c;在目标检测领域展现了卓越的性能。该系统利用YOLOv8…

Java 入门指南:Java NIO —— Buffer(缓冲区)

NIO 的引入 在传统的 Java I/O 模型&#xff08;BIO&#xff09;中&#xff0c;I/O 操作是以阻塞的方式进行的。当一个线程执行一个 I/O 操作时&#xff0c;它会被阻塞直到操作完成。这种阻塞模型在处理多个并发连接时可能会导致性能瓶颈&#xff0c;因为需要为每个连接创建一…

Java-数据结构-时间和空间复杂度 (ಥ_ಥ)

目录&#xff1a; 一、算法效率&#xff1a; 1、我们如何衡量一个算法的好与坏&#xff1a; 2、算法效率&#xff1a; 二、时间复杂度&#xff1a; 1、概念&#xff1a; 2、大O的渐进表示法&#xff1a; 3、推导大O渐进方法&#xff1a; 4、时间复杂度的举例&#xff1…

【推荐】Linux 推荐软件

【推荐】Linux 推荐软件 星火应用商店 Spark-Store: 专注Linux应用适配的应用商店 专注Linux应用适配的应用商店 微信 基于wine工具;wine中的windows涉及很多DLL需要配置&#xff0c;可以借助winetricks、Q4wine&#xff0c;另外还需要一个windwos系统&#xff0c;用来复制其中…

私人诊所|基于SprinBoot+vue的私人诊所管理系统(源码+数据库+文档)

私人诊所管理系统 基于SprinBootvue的私人诊所管理系统 一、前言 二、系统设计 三、系统功能设计 系统功能实现 后台模块实现 管理员功能实现 患者功能实现 医生功能实现 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取&am…

el-table自定义合并表格

前沿 &#xff1a; 为了更好的展示数据&#xff0c;很多地方用到表格合并&#xff0c;但是element文档里面没有好的合并方法&#xff0c;只能自定义合并表格来解决需求。于是乎&#xff0c;写了以下方法&#xff0c;方面以后拿来即用。 自定义合并表格 表格数据 tableData: [{i…

图片怎么裁剪中间部分?这几种裁剪方法每个人都学的会!

图片怎么裁剪中间部分&#xff1f;在数字生活的广阔图景中&#xff0c;图片裁剪作为一项基本技能&#xff0c;其重要性日益凸显&#xff0c;这一操作不仅是对图像边界的精准界定&#xff0c;更是通往个性化表达与标准化应用的桥梁。从日常社交媒体的瞬间分享&#xff0c;到专业…

多模态工业异常检测算法整理

本文统计了MVTec 3D-AD上的多个多模态异常检测算法&#xff0c;仅对比其I-AUROC指标。数据的来源为多模态工业异常检测Benchmark | Ziuch の Blog&#xff0c;这位博主经常分享很多工业异常检测的优秀博文&#xff0c;质量很高。 MVTec 3D-AD相关的异常检测算法包含3大类&#…

智慧公厕系统,重塑公共卫生间新生态@卓振思众

在快节奏的现代生活中&#xff0c;公共卫生间作为城市基础设施的重要组成部分&#xff0c;其管理效率和使用体验直接关系到市民的生活质量。近年来&#xff0c;随着科技的飞速发展&#xff0c;智慧卫生间系统应运而生&#xff0c;以其智能化、便捷化的特点&#xff0c;正逐步改…

低代码用户中心的构建与应用

引言 在现代软件开发中&#xff0c;低代码平台因其高效、灵活、用户友好的特性而逐渐受到青睐。特别是在用户中心的构建方面&#xff0c;低代码平台能够显著提升开发效率&#xff0c;降低开发成本。本文将探讨如何利用低代码平台构建一个高效的用户中心&#xff0c;并分享一些…

树形dp + 位运算 + 差分,MC0362 异或

目录 一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 二、解题报告 1、思路分析 2、复杂度 3、代码详解 一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 码题集OJ-异或 (matiji.net) 二、解题报告 1、思路分析 考虑每个结点u&a…

工作 6 年,@Transactional 注解用的一塌糊涂

接手新项目一言难尽&#xff0c;别的不说单单就一个 Transactional 注解用的一塌糊涂&#xff0c;五花八门的用法&#xff0c;很大部分还失效无法回滚。 有意识的在涉及事务相关方法上加Transactional注解&#xff0c;是个好习惯。不过&#xff0c;很多同学只是下意识地添加这个…