代码随想录算法训练营第四十一天 | 121. 买卖股票的最佳时机 , 122.买卖股票的最佳时机II , 123.买卖股票的最佳时机III

news2024/12/23 13:15:24

目录

 121. 买卖股票的最佳时机

思路

暴力

贪心

动态规划

1.确定dp数组(dp table)以及下标的含义

2.确定递推公式

3.dp数组如何初始化

4.确定遍历顺序

5.举例推导dp数组

方法一: 贪心

方法二:动态规划1

方法三:动态规划2

方法四:动态规划3

心得收获 

122.买卖股票的最佳时机II  

思路

方法一:动态规划

方法二:动态规划

123.买卖股票的最佳时机III  

思路

1.确定dp数组以及下标的含义

2.确定递推公式

3.dp数组如何初始化

4.确定遍历顺序

5.举例推导dp数组

方法一:动态规划-二维

方法二:动态规划-一维


 121. 买卖股票的最佳时机

  • 题目链接:力扣题目链接
  • 文章讲解:代码随想录 

  • 视频讲解:动态规划之 LeetCode:121.买卖股票的最佳时机1

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。

  • 示例 1:

  • 输入:[7,1,5,3,6,4]

  • 输出:5
    解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。

  • 示例 2:

  • 输入:prices = [7,6,4,3,1]

  • 输出:0
    解释:在这种情况下, 没有交易完成, 所以最大利润为 0。

思路

暴力

这道题目最直观的想法,就是暴力,找最优间距了。

贪心

因为股票就买卖一次,那么贪心的想法很自然就是取最左最小值,取最右最大值,那么得到的差值就是最大利润。

动态规划

动规五部曲分析如下:

1.确定dp数组(dp table)以及下标的含义

dp[i][0] 表示第i天持有股票所得最多现金 ,这里可能有同学疑惑,本题中只能买卖一次,持有股票之后哪还有现金呢?

其实一开始现金是0,那么加入第i天买入股票现金就是 -prices[i], 这是一个负数。

dp[i][1] 表示第i天不持有股票所得最多现金

注意这里说的是“持有”,“持有”不代表就是当天“买入”!也有可能是昨天就买入了,今天保持持有的状态

很多同学把“持有”和“买入”没区分清楚。

在下面递推公式分析中,我会进一步讲解。

2.确定递推公式

如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
  • 第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i]

那么dp[i][0]应该选所得现金最大的,所以dp[i][0] = max(dp[i - 1][0], -prices[i]);

如果第i天不持有股票即dp[i][1], 也可以由两个状态推出来

  • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  • 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]

同样dp[i][1]取最大的,dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

这样递推公式我们就分析完了

3.dp数组如何初始化

由递推公式 dp[i][0] = max(dp[i - 1][0], -prices[i]); 和 dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);可以看出

其基础都是要从dp[0][0]和dp[0][1]推导出来。

那么dp[0][0]表示第0天持有股票,此时的持有股票就一定是买入股票了,因为不可能有前一天推出来,所以dp[0][0] -= prices[0];

dp[0][1]表示第0天不持有股票,不持有股票那么现金就是0,所以dp[0][1] = 0;

4.确定遍历顺序

从递推公式可以看出dp[i]都是由dp[i - 1]推导出来的,那么一定是从前向后遍历。

5.举例推导dp数组

以示例1,输入:[7,1,5,3,6,4]为例,dp数组状态如下:

121.买卖股票的最佳时机

dp[5][1]就是最终结果。

为什么不是dp[5][0]呢?

因为本题中不持有股票状态所得金钱一定比持有股票状态得到的多!

方法一: 贪心

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        low = float("inf")
        result = 0
        for i in range(len(prices)):
            low = min(low, prices[i]) #取最左最小价格
            result = max(result, prices[i] - low) #直接取最大区间利润
        return result

方法二:动态规划1

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        length = len(prices)
        if length == 0:
            return 0
        dp = [[0] * 2 for _ in range(length)]
        dp[0][0] = -prices[0]
        dp[0][1] = 0
        for i in range(1, length):
            dp[i][0] = max(dp[i-1][0], -prices[i])
            dp[i][1] = max(dp[i-1][1], prices[i] + dp[i-1][0])
        return dp[-1][1]

方法三:动态规划2

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        length = len(prices)
        dp = [[0] * 2 for _ in range(2)] #注意这里只开辟了一个2 * 2大小的二维数组
        dp[0][0] = -prices[0]
        dp[0][1] = 0
        for i in range(1, length):
            dp[i % 2][0] = max(dp[(i-1) % 2][0], -prices[i])
            dp[i % 2][1] = max(dp[(i-1) % 2][1], prices[i] + dp[(i-1) % 2][0])
        return dp[(length-1) % 2][1]

方法四:动态规划3

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        length = len(prices)
        dp0, dp1 = -prices[0], 0 #注意这里只维护两个常量,因为dp0的更新不受dp1的影响
        for i in range(1, length):
            dp1 = max(dp1, dp0 + prices[i])
            dp0 = max(dp0, -prices[i])
        return dp1

心得收获 

有童鞋可能对推导公式有很大疑惑,具体的解释可以看下面:

1、确定dp数组以及下标的含义 :
每天其实就是两种状态,手里有股票和手里没股票,再加上“某天”这个维度,所以用一个二维的就可以表示所有天数的情况。

dp数组有i行,i就是天数。有两列,表示某一天的两种情况。

dp[i][0]:表示第i天手里持有股票的状态

这里持有的这个股票有两种情况:

  1. 前面一直没买过股票,买了第i天这个股票,
  2. 第i天之前的某一天已经买了一个股票,一直没卖,然后一直持有到第i天

dp[i][1]表示,第i天手里不持有股票状态

这里的不持有股票有三种情况:

  1. 从第0天到第i天,一直没买过股票
  2. 第i天之前的某一天买过股票,我们在第i天卖掉
  3. 在第i天之前已经有过一次买股票和一次卖股票的操作了所以在第i天是不持有股票的状态

2、递推公式 dp[i][0] = max(dp[i-1][0],-prices[i]) 前面说过,持有股票有两种情况:

  1. 如果是之前就有股票,那么就是dp[i-1][0],
  2. 如果之前一直没买股票,然后买了第i天这个股票,那么我们的利润应该是-prices[i]

     为什么不是dp[i-1][1]-prices[i]?从两个方面都可以解释:

  1. 一方面,本题只能买股票一次,如果我们选择第i天买这个股票,那么我们第i天之前只能是什么操作都不做。那么我们的利润应该一直都是0,所以当我们第i天买这个股票时,我们的利润变成了-prices[i]
  2. 第二个方面,我们前面已经解释过了不持有股票的状态,有三种情况而只有第一种情况是符合题意的,此时的利润依旧是-prices[i]

dp[i][1] = max(dp[i-1][1], dp[i-1][0]+prices[i]) 前面说过,不持有股票有三种情况:

第一种情况(一直没买过股票)和第三种情况(第i天之前已经进行过一次买卖股票的操作)都可以用dp[i-1][1]表示

第二种情况就是第i天之前买过,我们在第i天卖掉,所以就是dp[i-1][0]+prices[i]

该分析来源于,视频讲解的评论区

122.买卖股票的最佳时机II  

  • 题目链接:力扣题目链接
  • 文章讲解:代码随想录 

  • 视频讲解:动态规划,股票问题第二弹 | LeetCode:122.买卖股票的最佳时机II

给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

  • 示例 1:

  • 输入: [7,1,5,3,6,4]

  • 输出: 7
    解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。

  • 示例 2:

  • 输入: [1,2,3,4,5]

  • 输出: 4
    解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

  • 示例 3:

  • 输入: [7,6,4,3,1]

  • 输出: 0
    解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。

提示:

  • 1 <= prices.length <= 3 * 10 ^ 4
  • 0 <= prices[i] <= 10 ^ 4

思路

本题和121. 买卖股票的最佳时机的唯一区别是本题股票可以买卖多次了(注意只有一只股票,所以再次购买前要出售掉之前的股票)

其他的思路都是一样的,只有推导公式时是有一些区别:

在121. 买卖股票的最佳时机中,因为股票全程只能买卖一次,所以如果买入股票,那么第i天持有股票即dp[i][0]一定就是 -prices[i]。

而本题,因为一只股票可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润。

那么第i天持有股票即dp[i][0],如果是第i天买入股票,所得现金就是昨天不持有股票的所得现金 减去 今天的股票价格 即:dp[i - 1][1] - prices[i]。

方法一:动态规划

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        length = len(prices)
        dp = [[0] * 2 for _ in range(length)]
        dp[0][0] = -prices[0]
        dp[0][1] = 0
        for i in range(1, length):
            dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]) #注意这里是和121. 买卖股票的最佳时机唯一不同的地方
            dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i])
        return dp[-1][1]

方法二:动态规划

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        length = len(prices)
        dp = [[0] * 2 for _ in range(2)] #注意这里只开辟了一个2 * 2大小的二维数组
        dp[0][0] = -prices[0]
        dp[0][1] = 0
        for i in range(1, length):
            dp[i % 2][0] = max(dp[(i-1) % 2][0], dp[(i-1) % 2][1] - prices[i])
            dp[i % 2][1] = max(dp[(i-1) % 2][1], dp[(i-1) % 2][0] + prices[i])
        return dp[(length-1) % 2][1]

123.买卖股票的最佳时机III  

  • 题目链接:力扣题目链接
  • 文章讲解:代码随想录 

  • 视频讲解:动态规划,股票至多买卖两次,怎么求? | LeetCode:123.买卖股票最佳时机III

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

  • 示例 1:

  • 输入:prices = [3,3,5,0,0,3,1,4]

  • 输出:6 解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3。

  • 示例 2:

  • 输入:prices = [1,2,3,4,5]

  • 输出:4 解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

  • 示例 3:

  • 输入:prices = [7,6,4,3,1]

  • 输出:0 解释:在这个情况下, 没有交易完成, 所以最大利润为0。

  • 示例 4:

  • 输入:prices = [1] 输出:0

提示:

  • 1 <= prices.length <= 10^5
  • 0 <= prices[i] <= 10^5

思路

关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。

接来下我用动态规划五部曲详细分析一下:

1.确定dp数组以及下标的含义

一天一共就有五个状态,

  1. 没有操作 (其实我们也可以不设置这个状态)
  2. 第一次持有股票
  3. 第一次不持有股票
  4. 第二次持有股票
  5. 第二次不持有股票

dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

例如 dp[i][1] ,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i][1] 延续买入股票的这个状态。

2.确定递推公式

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?

一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可推出剩下状态部分:

dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);

dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

3.dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0][3] = -prices[0];

同理第二次卖出初始化dp[0][4] = 0;

4.确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

5.举例推导dp数组

以输入[1,2,3,4,5]为例

123.买卖股票的最佳时机III

大家可以看到红色框为最后两次卖出的状态。

现在最大的时候一定是卖出的状态,而两次卖出的状态现金最大一定是最后一次卖出。如果想不明白的录友也可以这么理解:如果第一次卖出已经是最大值了,那么我们可以在当天立刻买入再立刻卖出。所以dp[4][4]已经包含了dp[4][2]的情况。也就是说第二次卖出手里所剩的钱一定是最多的。

所以最终最大利润是dp[4][4]

方法一:动态规划-二维

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        if len(prices) == 0:
            return 0
        dp = [[0] * 5 for _ in range(len(prices))]
        dp[0][1] = -prices[0]
        dp[0][3] = -prices[0]
        for i in range(1, len(prices)):
            dp[i][0] = dp[i-1][0]
            dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])
            dp[i][2] = max(dp[i-1][2], dp[i-1][1] + prices[i])
            dp[i][3] = max(dp[i-1][3], dp[i-1][2] - prices[i])
            dp[i][4] = max(dp[i-1][4], dp[i-1][3] + prices[i])
        return dp[-1][4]

方法二:动态规划-一维

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        if len(prices) == 0:
            return 0
        dp = [0] * 5 
        dp[1] = -prices[0]
        dp[3] = -prices[0]
        for i in range(1, len(prices)):
            dp[1] = max(dp[1], dp[0] - prices[i])
            dp[2] = max(dp[2], dp[1] + prices[i])
            dp[3] = max(dp[3], dp[2] - prices[i])
            dp[4] = max(dp[4], dp[3] + prices[i])
        return dp[4]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2080789.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用rqt_console和roslaunch

1.使用rqt_console和rqt_logger_level rosrun rqt_console rqt_console 执行完该命令后有如下界面: 继续执行如下命令: rosrun rqt_logger_level rqt_logger_level 此时有如下新界面: 接下来继续运行如下命令: rosrun turtlesim turtlesim_node 上面第一…

慢sql问题解决,sql优化,数据库(mysql)

文章目录 1、count效率比较2、作者遇到的慢sql问题2.1、使用排序导致变慢问题2.2、使用LEFT JOIN 导致索引失效的问题2.3、子查询导致索引失效 3、explain命令介绍4、阿里云rds数据库&#xff08;mysql的一种&#xff09;主键索引查询很慢问题参考文档 1、count效率比较 所以结…

初识C++(8.27)

用C实现: 提示并输入一个字符串&#xff0c;统计该字符串中字母个数、数字个数、空格个数、其他字符的个数. #include <iostream> #include <string>using namespace std;int main() {string str;cout << "请输入一个字符串: ";getline(cin, str…

uni-app - - - - - 使用uview-plus详细步骤

uni-app - - - - - 使用uview-plus详细步骤 1. 使用HbuilderX创建空白项目2. 安装插件3. uview-plus配置使用3.1 main.js配置3.2 uni.scss配置3.3 App.vue配置3.4 pages.json 4. 重启Hbuilderx 1. 使用HbuilderX创建空白项目 2. 安装插件 工具 > 插件安装 > 前往插件市场…

用Python探究两组变量的相关性_典型相关分析(CCA)模板

典型相关分析&#xff08;Canonical Correlation Analysis, CCA&#xff09;是一种多变量统计分析方法&#xff0c;用于研究两组变量之间的整体相关性。它的基本原理是在两组变量中分别提取有代表性的两个综合变量&#xff08;即两组变量的线性组合&#xff09;&#xff0c;通过…

Java设计模式之工厂模式详细讲解和案例示范

在Java的设计模式中&#xff0c;工厂模式&#xff08;Factory Pattern&#xff09;是最常见和最有用的一种创建型模式。工厂模式的核心思想是将对象的创建与使用分离&#xff0c;从而提供了一种灵活的方式来创建不同类型的对象。这种模式尤其适用于复杂对象的创建过程&#xff…

HTTrack镜像网站实践

目录 前言 Windows下使用HTTrack HTTrack安装 HTTrack使用 Kali linux下使用HTTrack HTTrack安装 HTTrack使用 前言 在特殊时期&#xff0c;不想把真实的网站页面展示给用户&#xff0c;但又不能关停。此刻&#xff0c;可以用镜像网站替换真实网站&#xff0c;降低安全风…

Golang | Leetcode Golang题解之第378题有序矩阵中第K小的元素

题目&#xff1a; 题解&#xff1a; func kthSmallest(matrix [][]int, k int) int {n : len(matrix)left, right : matrix[0][0], matrix[n-1][n-1]for left < right {mid : left (right - left) / 2if check(matrix, mid, k, n) {right mid} else {left mid 1}}retur…

52.给定一个整数 n,实现一个算法返回 n 皇后不同的解决方案的数量

52. N-Queens II 题目 n皇后问题是指将n个皇后放置在一个nn的棋盘上,使得任意两个皇后不在同一行、同一列或同一对角线上。 给定一个整数 n,返回 n 皇后问题不同的解法数量。 示例: 输入: 4 输出: 2 解释: 4皇后问题有如下两个不同的解法: [ [“.Q…”, // 解法 1 “……

LabVIEW反编译与源程序加密破解

最近&#xff0c;不少粉丝咨询如何将生成的 LabVIEW 可执行程序反编译&#xff0c;所以写了这篇文章来详细探讨这个话题。反编译问题引起了广泛的关注&#xff0c;许多开发者希望能够从现有的可执行文件中提取源代码&#xff0c;以便进行修改或重新利用。然而&#xff0c;反编译…

Java基础:什么是多态

什么是多态 多态是面向对象的三大特性之一&#xff08;另外两个是封装和继承&#xff09;&#xff0c;指的是同一个方法能执行不同的行为&#xff0c;在代码上的体现是&#xff1a;声明为父类的对象&#xff0c;可以被不同的实现类赋值&#xff0c;其中实现类必须继承或者实现…

OpenCV图像拼接多频段融合源码重构

OpenCV图像拼接多频段融合源码重构 图像拼接是计算机视觉中的一个常见问题&#xff0c;OpenCV提供了十分完善的算法类库。作者使用OpenCV4.6.0进行图像拼接&#xff0c;其提供了包括曝光补偿、最佳缝合线检测以及多频段融合等图像拼接常用算法&#xff0c;测试发现多频段融合算…

uni-app - - - - - 自定义tabbar

uni-app - - - - - 自定义tabbar 1. 创建页面2. pages.json3. 自定义tabbar4. 隐藏原生tabbar5. 全局注册组件6. 页面使用7. 效果图展示 1. 创建页面 2. pages.json 配置tabbar {"tabBar": {"list": [{"pagePath": "pages/ballroom/ballr…

认知杂谈25

今天分享 有人说的一段争议性的话 I I 《拖延症&#xff0c;谁都有过》 嘿&#xff0c;朋友们&#xff01;咱都来说说&#xff0c;拖延症这玩意儿&#xff0c;好多人都被它给缠上啦。你看哈&#xff0c;本来计划得好好的&#xff0c;今天要把房间收拾得干干净净&#xff0c;可…

SSH弱口令爆破服务器

一、实验背景 1、概述 使用kali的hydra进行ssh弱口令爆破&#xff0c;获得服务器的用户名和口令&#xff0c;通过 ssh远程登录服务器。 2、实验环境 kali攻击机&#xff1a;192.168.1.107 centos服务器&#xff1a;192.168.1.105 二、前置知识 1、centos设置用户并设置弱…

软件设计原则之接口隔离原则

接口隔离原则&#xff08;Interface Segregation Principle, ISP&#xff09;是面向对象设计中的一个重要原则&#xff0c;它属于SOLID原则之一。这个原则强调客户端&#xff08;即接口的调用者&#xff09;不应该被迫依赖于它们不使用的方法。换句话说&#xff0c;一个类对另一…

【区块链 + 司法存证】数据存证区块链服务开放平台 | FISCO BCOS应用案例

大数据时代&#xff0c;数据参与社会生产过程&#xff0c;实现价值增值&#xff0c;是一种新型生产要素。数据产品具有易复制、易修改等特点&#xff0c; 因而数据产品在使用、流通过程中面临被非法复制、非法传播、非法篡改和知识产权窃取等安全风险。在存证数 据上链过程中&a…

PDF转化为机器可读格式的工具

MinerU PDF转化为机器可读格式的工具 项目简介 MinerU是一款将PDF转化为机器可读格式的工具&#xff08;如markdown、json&#xff09;&#xff0c;可以很方便地抽取为任意格式。 项目地址&#xff1a; https://github.com/opendatalab/MinerU/tree/master主要功能 删除页…

微信开发者工具 自定义字体大小

常用编程软件自定义字体大全首页 文章目录 前言具体操作1. 打开文件设置对话框2. 在Font Family里面输入字体 前言 微信开发者工具 自定义字体大小&#xff0c;统一设置为 Cascadia Code SemiBold &#xff0c;大小为 14 具体操作 【文件】>【首选项】>【设置】>【文…

登录校验组件 Spring Security OAuth2 详解

什么是OAuth? OAuth&#xff08;全称Open Authorization&#xff0c;开放授权&#xff09;是一种基于令牌的身份验证和授权协议&#xff0c;它允许用户授权第三方应用访问其在服务提供者&#xff08;如社交媒体、邮箱服务等&#xff09;上存储的特定信息&#xff0c;而无需直…